最新实例
Genetic Operators and MATLAB Code for Numerical Analysis
3.2 Genetic Operators (1) Crossover Operator The crossover operator randomly pairs individuals from the parent population for crossover operations, generating ( m ) offspring individuals to form the next generation. Two types of crossover are employed: single-point crossover and two-point crossover. Given two individuals for crossover ( P = {p_1, p_2, p_3, \dots, p_n} ) and ( Q = {q_1, q_2, q_3, \dots, q_n} ), a random crossover point ( b_1 ) is chosen from the range [1, n] for single-point crossover. The elements before ( b_1 ) in ( P ) are copied to offspring individual ( \text{new Individual1} ), while the remaining elements are copied from ( Q ). Similarly, a second offspring ( \text{new Individual2} ) is generated by swapping the roles of ( P ) and ( Q ). In two-point crossover, two random crossover points ( b_1 ) and ( b_2 ) are chosen, and the elements between ( b_1 ) and ( b_2 ) in ( P ) are copied to the offspring, with the remaining elements taken from ( Q ). (2) Mutation Operator After the crossover operation, two mutation operators are applied to the offspring individuals. The first is rotation mutation, where a random position ( \text{bit} ) is chosen, and with probability ( p_m1 ), the portion of the individual after ( \text{bit} ) is rotated. The second is position mutation, with a smaller probability ( p_m2 ), two integers ( \text{bit1} ) and ( \text{bit2} ) are randomly chosen from the range [1, n], and the corresponding parts of the individual are swapped. (3) Selection Operator The fitness of the mutated offspring individuals is evaluated using the lowest level line method. The parent and offspring individuals are ranked by their fitness in descending order, and the top ( m ) individuals are selected as the next generation's parents. 3.3 Termination Criteria The steps in sections 3.2(1), 3.2(2), and 3.2(3) are repeated until the fitness of the best solution meets the required threshold or the pre-defined number of generations is reached. At this point, the optimal solution is output. 4. Case Study To test the performance of the algorithm, two cases from literature [3] are solved. In Case 1, a large rectangle of size ( 15 \times 40 ) is divided into 25 smaller rectangles. Based on the lowest level line method, the corresponding coding sequence is ( \text{Opt} = {1, -9, 11, -15, 17, -24, -25, -10, -14, -22, -23, -2, -3, -5, 18, 7, -8, -12, 19, -20, 21, 6, 13, 4} ). The width is set at 40, and height considerations follow suit for the genetic algorithm implementation.
解析克里格内插生成概率图MATLAB应用与实现
图10.77 析取克里格内插生成的预测图2. 创建概率图(Probability Map)其在ArcGIS中的实现过程与指示克里格的方法雷同,对jsGDP_training创建概率图的结果如下图10.78所示:图10.78 析取克里格内插生成的概率图58。
MATLAB 2017b许可证文件安装步骤
将指定的“license_standalone.lic”文件复制到软件安装目录中的licenses文件夹内,默认路径为: C:\Program Files\MATLAB\R2017a\licenses。 运行一次MATLAB软件(如果报错可以忽略)。 将“netapi32.dll”文件复制到软件安装目录中的win64文件夹内,默认路径为: C:\Program Files\MATLAB\R2017a\bin\win64。
HOG SVM Matlab Code-Sliding Window Face Detection
本代码使用定向梯度直方图(HOG)和支持向量机(SVM)来区分实际的人脸对象与非人脸对象,具体实现基于Matlab。代码位于名为code的目录中,必要的数据集存放在data目录中。该方法采用滑动窗口技术,在图像中逐步扫描并检测出可能存在的人脸区域。
Matlab Matrix Operations-Basics of Vector and Matrix Calculations in Matlab
Matlab基础向量与矩阵运算 在Matlab中,矩阵运算是核心功能之一,主要包括以下几种操作: 矩阵加法:对于两个矩阵A和B,它们的维度必须相同才能进行加法运算。运算符是+,例如:C = A + B; 矩阵乘法:矩阵的乘法规则是:A的列数必须等于B的行数,运算符是*,例如:C = A * B; 矩阵转置:使用单引号(')来转置矩阵,例如:C = A'; 矩阵求逆:对于方阵A,可以使用inv函数来求逆,例如:B = inv(A); 点积与叉积:Matlab支持向量的点积和叉积,例如:dot_product = dot(A, B);cross_product = cross(A, B); 通过这些基本的矩阵操作,可以完成大量的数学计算,广泛应用于数据分析、工程计算等领域。
Matlab游戏开发与C++框架资源汇总
Matlab代码做游戏非常有趣,而在C / C++的开发领域,有许多非常棒的框架、库和资源可以帮助你提高开发效率。这些资源包括了标准的C++库、STL(标准模板库)等,它们为开发人员提供了丰富的功能与支持。 C++标准库:包括STL容器、STL算法、STL功能等。用核心语言编写的类和函数的集合,是C++ ISO标准本身的一部分。 POSIX系统的C标准库:它提供了标准的C函数库,尤其是在Unix和类Unix系统中的使用。ISO/IEC JTC1/SC22/WG21标准委员会负责制定这一标准。 Apache可移植运行时:这是另一个跨平台实用的C++库,广泛应用于不同系统间的开发。 Adobe源代码库:提供了一些经过同行评审的可移植C++源库,能够帮助开发人员在跨平台开发中获得更好的支持。 BDE开发环境:彭博实验室(Bloomberg Labs)开发的环境,包含了大量的C++资源和工具,致力于提供专业质量的创意编码。 这些库和框架的共同特点是提高了C++的开发效率和跨平台能力,为程序员提供了非常强大的支持。无论你是使用Matlab进行游戏开发,还是选择其他语言,了解和使用这些工具,都会让你的开发之路更加顺畅。
Matlab开发-ndlinspacev11 2008年2月11日版本
Matlab开发 - ndlinspacev11: 2008年2月11日版本。广义线性空间:多点之间的线性间隔值。
MATLAB开发-FocusMeasure函数实现图像焦点度测量
MATLAB开发 - FocusMeasure。该函数用于测量图像的相对焦点度。它通过分析图像的清晰度和对比度来确定图像的焦点状态,从而帮助评估图像是否达到理想的聚焦效果。FocusMeasure函数通常应用于图像处理、计算机视觉以及自动对焦系统中。通过该函数,用户能够自动化地检查图像的清晰度,优化拍摄过程或后期处理工作流。
Voice Recognition Control System Design Based on PC and Sunplus SPCE061A Microcontroller
This document discusses the design of a voice recognition control system based on PC and the Sunplus SPCE061A microcontroller. The system leverages the powerful computing capabilities of the PC and integrates them with the embedded functionalities of the SPCE061A to achieve real-time voice control. Key components of the system include speech signal processing, data transmission, and hardware-software interaction between the PC and the microcontroller. The design ensures accuracy, reliability, and scalability in voice-based applications, allowing for seamless integration with various devices for automation and control tasks.
Matlab实现简单人脸识别代码
在Matlab上实现人脸识别的过程相对简单。首先,加载图像数据集,并使用人脸检测算法(如Haar特征分类器)进行面部特征的检测。然后,通过提取特征向量,应用支持向量机(SVM)或其他分类器来进行人脸识别。代码实现流程如下: 导入图像并转换为灰度图像 使用Haar特征分类器进行人脸检测 提取人脸特征并生成训练数据 使用SVM训练模型 使用训练好的模型对新图像进行识别并显示结果。 简单的Matlab人脸识别代码示例如下: % 加载图像 img = imread('face.jpg'); % 转换为灰度图像 grayImg = rgb2gray(img); % 加载人脸检测器 faceDetector = vision.CascadeObjectDetector(); % 检测人脸 bbox = step(faceDetector, grayImg); % 显示检测结果 IFaces = insertObjectAnnotation(img, 'rectangle', bbox, 'Face'); imshow(IFaces); 通过上述代码,可以轻松实现基本的人脸识别功能。