最新实例
In-Depth Guide to Apache Flink for Data Stream and Batch Processing
《Learning_Apache_Flink_ColorImages.pdf》 dives deep into the powerful Apache Flink framework for streaming and batch processing. Here is an in-depth look at the core concepts and functions of each chapter: Chapter 1: Introduction to Apache Flink Apache Flink is an open-source distributed stream proce
Flink-一线公司实时计算实战经验分享
Apache Flink 是一款高度活跃的开源大数据计算引擎,专长于实时计算和流式处理。过去几年,尤其是2019年,Flink 的发展速度显著,GitHub Star 数量翻倍,Contributor 数量持续增长,表明越来越多的开发者和企业正在采用 Flink 并积极参与到其发展中。在中国,Flink 已经被广泛应用于多个一线公司,例如 阿里巴巴、快手、bili、美团点评、小米、OPPO 和 菜鸟网络 等。这些公司利用 Flink 构建了实时计算平台,用于处理大规模的准实时数据分析、实时数仓建设和实时风控等任务。Flink 的高效性能和灵活性使它成为实时数据处理领域的首选工具。 Flink
flink-sql-connector-hive-2.3.6_2.11-1.11.0.jar
文件 flink-sql-connector-hive-2.3.6_2.11-1.11.0.jar 是 Flink SQL 连接器与 Hive 的兼容版本,提供了对 Hive 数据源的读取和写入支持。
深入源码掌握Flink核心框架的执行机制
大数据实时流计算是处理大规模数据流的重要技术,而Apache Flink作为热门的大数据流处理框架,能够提供毫秒级的数据处理能力,因此成为了业界关注的焦点。将从源码的角度深入剖析Flink核心框架的执行流程。 执行环境与模式 Flink的执行环境是整个流处理作业的起点,负责作业的编排、任务调度和资源管理。执行环境分为本地模式和远程模式,本地模式适合于开发和调试,而远程模式则支持分布式处理。 核心算子与作业逻辑 算子(Operator)在Flink流处理中承担数据流的转换处理。算子的注册(声明)是定义作业逻辑的关键步骤。 图结构:StreamGraph、JobGraph与Execut
Flink 1.15.4在Linux环境中的应用详解
《Flink 1.15.4在Linux环境中的应用详解》 Apache Flink是一个流行的开源流处理框架,被广泛用于实时数据处理和分析。在Linux操作系统中部署和使用Flink,可以充分利用其高效、可扩展和高可用的特性。Flink 1.15.4是该项目的一个稳定版本,它包含了一系列的优化和改进,提升性能并增强用户体验。接下来,我们将深入探讨Flink 1.15.4在Linux环境中的关键知识点。 Flink 1.15.4新特性 性能优化:Flink 1.15.4着重提升了运行时性能,包括更高效的内存管理,优化了网络传输和状态管理,使得大规模数据处理更为流畅。 API改进:提
Integrating TensorFlow with Flink for Stream Processing and AI
《TensorFlow on Flink:融合大数据流处理与深度学习》 Apache Flink是一个流行的开源流处理框架,专为处理无界和有界数据流设计,广泛应用于数据处理和特征工程。而TensorFlow则是一个基于数据流图的开源软件库,用于数值计算,尤其在人工智能计算领域具有极高的应用价值。将TensorFlow与Flink结合,可以实现大规模分布式环境中的特征工程、模型训练、模型推理以及模型服务。 Flink与TensorFlow的整合中,用户可以在同一框架下完成特征工程、模型训练和模型预测。通过Flink,可以实现数据源的接入、转换、清洗,然后利用TensorFlow进行模型的训练和推
Flink入门从批处理到流处理的完整指南
Flink入门介绍 思维导图:Flink 是一款广受欢迎的流处理框架,支持大规模的实时和批量数据处理。理解其基础有助于快速上手并应用于数据分析和处理任务。以下为其主要内容概述: 1. 什么是Flink? Flink 是 Apache 基金会的开源项目,擅长处理流式数据和批量数据。 提供低延迟和高吞吐量的流数据处理。 2. Flink的核心概念 批处理:将数据分成批次进行处理,通常用于历史数据的分析。 流处理:实时处理数据,适用于需要快速响应的数据应用场景。 时间窗口:在流数据处理中常用,便于按时间段处理数据。 3. Flink的架构 任务管理器:负责执行任务。 作业管理器:负责协调任
如何通过TaskManager掌握高级项目管理
3.3 TaskManager执行任务 3.3.1 TaskManager的基本组件 TaskManager是Flink中资源管理的基本组件,是所有执行任务的基本容器,提供了内存管理、IO管理、通信管理等一系列功能。以下是各个模块的简要介绍: MemoryManagerFlink并没有将所有内存管理都委托给JVM,因为JVM普遍存在存储对象密度低、大内存时GC对系统影响大等问题。因此,Flink自行抽象了一套内存管理机制,将所有对象序列化后放在自己的MemorySegment上进行管理。MemoryManager涉及内容较多,将在后续章节深入剖析。 IOManagerFlink通过IO
深入解析Apache Flink的资源管理机制
深入解读Flink资源管理机制 Apache Flink是一个开源的大数据处理引擎,具备高性能、灵活性和可扩展性。其中,资源管理机制是Flink的核心组件之一,负责管理集群中的资源分配和调度。将深入解读Flink资源管理机制的原理和实现。 一、Flink集群架构 Flink集群由多个组件组成,包括JobManager、TaskManager、ResourceManager、SlotManager等。- JobManager 负责管理作业的执行。- TaskManager 负责管理任务的执行。- ResourceManager 负责管理资源的分配。- SlotManager 负责管理Slot的分
深入解析Flink核心架构与执行流程从源码剖析
Flink是当前大数据处理领域中备受关注的开源分布式流处理框架,其毫秒级的数据处理能力在实时计算场景中尤为突出。将通过Flink官网提供的WordCount示例,深入分析其核心架构与执行流程,帮助读者深入理解Flink的运行机制。 1. 从Hello, World到WordCount:Flink执行流程起步 Flink的执行流程从设置执行环境开始。在WordCount示例中,首先创建了一个StreamExecutionEnvironment实例,这一配置作为Flink任务的入口。程序配置了数据源,以socket文本流为例,指定了主机名和端口号。接着,代码读取socket文本流并进行分词与计数操