最新实例
Today楚河汉街OC柜节能率提升33%-能源设备物联网数据分析
Today楚河汉街店的OC柜在节能率方面达到了33%。这是通过能源及设备物联网数据服务平台进行监控与优化的结果。这一平台帮助我们持续关注和提高OC柜的能效表现,确保更环保的能源使用。
数据结构与算法学习指南.zip
逻辑结构:描述数据元素之间的逻辑关系,包括线性结构(如数组、链表)、树形结构(如二叉树、堆、B树)、图结构(有向图、无向图等)以及集合和队列等抽象数据类型。存储结构(物理结构):描述数据在计算机中如何具体存储,如数组的连续存储、链表的动态分配节点、树和图的邻接矩阵或邻接表表示等。基本操作:针对每种数据结构,定义了一系列基本的操作,包括但不限于插入、删除、查找、更新、遍历等,并分析这些操作的时间复杂度和空间复杂度。算法:- 算法设计:研究如何将解决问题的步骤形式化为一系列指令,使得计算机可以执行以求解问题。- 算法特性:包括输入、输出、有穷性、确定性和可行性。即一个有效的算法必须能在有限步骤内结
工程造价清单文本之电梯清单名称样本集解析
本文本样本用于文本探索与文本挖掘,样本数据均从真实工程造价文件中提取,并形成一个文本样本集合。本样本只包含清单名称部分,且专为电梯清单类别所设计。请注意,样本集中包含少量噪音样本,在使用时需要自行处理这些噪音数据。
DeepLearning_for_StockMarket_Prediction
深度学习在股市预测方面的应用是一个复杂而多元的研究课题,涉及到机器学习、金融工程以及数据科学等多个领域。韩国股价数据作为研究对象,选择深度学习方法进行分析和预测,主要是因为深度学习技术在处理非结构化数据方面具有显著优势。深度学习能够自动从大量原始数据中提取特征,而无需依赖预测因子的先验知识。这一点对于股市预测尤为重要,因为股市数据通常是非线性的、含有噪声的,并且有着复杂的动态特征。深度学习算法在选择网络结构、激活函数和其他模型参数方面存在较大的变化空间,其性能明显依赖于数据表示方法。 本研究尝试提供一个全面和客观的评估,以探讨深度学习算法在股票市场分析和预测方面的优缺点。实验使用了高频的日内股
大数据思维电信学院与互联网企业基础学习
在电信学院的学习过程中,大数据的学习尤为重要。掌握大数据思维,是现代互联网企业发展的基础。数据思维不仅仅是对技术的理解,更是对数据处理、分析和应用的全方位思考。学习如何通过数据来洞察问题、优化决策,提升效率,是每个从事互联网企业工作的人员必备的能力。
Security Analysis-Analog Circuit Design Handbook by Linear Technology(Volume 2,English Edition)
3.1 Efficiency Analysis In traditional models and methods, the time taken for an alternative term to be approved as a standard term can be described by the following equation (1): T = ∫₀ᵗ [n₁ * f(t) + n₂ * f(t)] dt (1) Here, T represents the time for a proposed term to become a standard term. In tr
深入解析数据结构与算法全面总结
逻辑结构:描述数据元素之间的逻辑关系,如线性结构(如数组、链表)、树形结构(如二叉树、堆、B树)、图结构(有向图、无向图等)以及集合和队列等抽象数据类型。存储结构(物理结构):描述数据在计算机中如何具体存储。例如,数组的连续存储,链表的动态分配节点,树和图的邻接矩阵或邻接表表示等。基本操作:针对每种数据结构,定义了一系列基本的操作,包括但不限于插入、删除、查找、更新、遍历等,并分析这些操作的时间复杂度和空间复杂度。 算法设计:研究如何将解决问题的步骤形式化为一系列指令,使得计算机可以执行以求解问题。算法特性:包括输入、输出、有穷性、确定性和可行性。即一个有效的算法必须能在有限步骤内结束,并且对
w_k_means_algorithm_variant_for_variable_selection
W-kMeans算法详解 W-kMeans算法是一种基于K-Means算法的变体,解决变量选择问题。该算法通过引入新的步骤,自动计算变量权重,从而提高聚类的准确性和效率。 W-kMeans算法的基本原理 W-kMeans算法的核心思想是引入变量权重的概念,根据数据的分布情况动态调整变量的权重。该算法的基本步骤如下: 初始化中心点和变量权重 根据当前的聚类结果和变量权重,计算每个样本点所属的聚类 根据聚类结果,更新中心点和变量权重 重复步骤2-3,直到聚类结果收敛 变量权重的计算 在W-kMeans算法中,变量权重的计算基于当前的聚类结果和数据分布情况。具体来说,变量权重可以通过以下公式计算
规范变换与Euclid空间中的线性方阵分析
§7.4 规范变换 本节讨论n维Euclid空间V的一类重要的线性变换。 定义 7.4.1 如果n维Euclid空间V的线性变换A与它的伴随变换A∗可交换,即 A A∗ = A∗ A,则A称为规范变换。根据定理7.3.6,如果n维Euclid空间V的线性变换A在V的一组基下的方阵为A,则它的伴随变换A∗在同一组基下的方阵为AT,因此可以引进规范方阵的概念如下。 定义 7.4.2 如果n阶实方阵A与它的转置AT可交换,即 A AT = AT A,则方阵A称为规范方阵。 定理 7.4.1 设A是n维Euclid空间V的线性变换,则下述命题等价:1. A是规范变换。2. 对任意α ∈ V,满足 ∥A
分析啤酒与尿布的购物关联.cpp
尿布和啤酒的故事 这是一个经典的故事,每次听到总能有所收获。在美国的沃尔玛超市里,有一个有趣的现象:尿布和啤酒竟然摆在一起出售,而这个看似奇怪的安排却让两者的销量都得到了显著提升。这不仅是个趣闻,还是沃尔玛超市真实的销售策略案例。 原来,很多美国女性会让她们的丈夫在下班后顺便为孩子买尿布,而这些丈夫通常也会顺便带回自己喜爱的啤酒,因此尿布和啤酒之间的购买频次意外地提升了。 购物篮分析 沃尔玛如何发现这一关联?答案是购物篮分析(market basket analysis, MBA)。这是一个重要的数据挖掘方法,被誉为“数据挖掘算法之王”,可以在商店中发现不同商品之间的关联,帮助商家增加销售额。