《TensorFlow on Flink:融合大数据流处理与深度学习》
Apache Flink是一个流行的开源流处理框架,专为处理无界和有界数据流设计,广泛应用于数据处理和特征工程。而TensorFlow则是一个基于数据流图的开源软件库,用于数值计算,尤其在人工智能计算领域具有极高的应用价值。将TensorFlow与Flink结合,可以实现大规模分布式环境中的特征工程、模型训练、模型推理以及模型服务。
Flink与TensorFlow的整合中,用户可以在同一框架下完成特征工程、模型训练和模型预测。通过Flink,可以实现数据源的接入、转换、清洗,然后利用TensorFlow进行模型的训练和推理。而模型服务部分,可以借助TensorFlow Serving,将训练好的模型部署为服务,同时Flink也可以继续参与分析过程,形成一个完整的数据处理与智能推理流程。
阿里巴巴开源的Flink-ai-extended项目(https://github.com/alibaba/flink-ai-extended)提供了Flink与TensorFlow及其他机器学习框架的集成方案。该项目中的Flink Operator允许用户自定义并行度,通过添加Application Manager(AM)角色和不同角色的节点,构建灵活的分布式机器学习任务。每个角色都有对应的状态机,用于管理节点状态,并且这些状态机是可扩展的,可以根据需求进行定制。