最新实例
Hadoop for Windows安装与配置指南
Hadoop是Apache软件基金会开发的一个开源分布式计算框架,主要用于处理和存储海量数据。'Hoodp Windows'可能是标题中的一个打字错误,实际上应该是'Hadoop for Windows',指的是在Windows操作系统上运行Hadoop的环境。这里我们将深入探讨Hadoop、其在Windows上的安装以及Hadoop 2.6.1版本的相关知识点。 1. Hadoop概述Hadoop是基于Java的,设计用于处理和存储大量数据的开源框架。它遵循“MapReduce”编程模型,将大规模数据集的计算任务分解为小部分,可以在集群中的多台服务器(节点)上并行处理,提高了计算效率。Had
HDFS Comics Hadoop分布式存储基础
HDFS是Hadoop分布式计算的存储基础。HDFS具有高容错性,可以部署在通用硬件设备上,适合数据密集型应用,并且提供对数据读写的高吞吐量。HDFS能够提供对数据的可扩展访问,通过简单地往集群里添加节点就可以解决大量客户端同时访问的问题。HDFS支持传统的层次文件组织结构,同现有的一些文件系统类似,如可以对文件进行创建、删除、重命名等操作。
深入掌握Hadoop生态系统第四版权威指南
《Hadoop权威指南》第四版是一本全面深入探讨Hadoop生态系统的重要著作,为读者提供对这个分布式计算框架的深刻理解和实用技能。该书由Tom White撰写,是Hadoop开发者和使用者不可或缺的参考书籍。本资源包括英文原版、中文翻译版以及相关代码,中文版虽然为扫描版,但内容完整,方便中文读者学习。 Hadoop是Apache基金会开发的一个开源项目,最初设计用于处理和存储大规模数据集。其核心包括两个主要组件:Hadoop Distributed File System (HDFS) 和 MapReduce。HDFS 是一个分布式文件系统,它将大文件分块存储在多台廉价服务器
MapReduce实现TopN中文词频与英文词频统计分析
1. 背景 在学习MapReduce框架时,为更好掌握其在大数据处理中的应用,我们着重在此项目中实现TopN中文词频统计。该实验通过MapReduce对汉字词频进行统计,并输出频率最高的TopN中文词汇。 2. 实验目标 实现英文词频统计,并掌握其MapReduce实现流程。 使用中文分词工具,实现中文词频统计。 重点实现TopN中文词频统计,掌握从数据处理到TopN结果的完整流程。 3. 实现过程 (1)英文词频统计:先通过MapReduce进行英文文本的分词统计,处理后输出英文单词的词频。 (2)中文词频统计:借助中文分词工具,针对输入的中文文本实现汉字或词组的频次统计。 (3)Top
HDFS Java API实现文件词频统计与结果输出到HDFS
需求说明 统计HDFS上的文件的词频,并将统计结果输出到HDFS。 核心特点 使用Maven进行jar包管理。 核心处理部分封装为接口(支持可插拔设计)。 路径、文件名等变量配置在自定义配置文件中,方便修改。 通过反射机制动态创建对象(实现接口)。 代码结构良好,具备较强的可插拔性。 主要实现流程 读取HDFS上的文件数据。 对文件内容进行词频统计。 将统计结果写回到HDFS中指定路径。 配置管理:路径和文件名等信息可通过配置文件进行修改,增强灵活性。 技术栈 HDFS Java API Maven 反射机制 自定义配置文件 通过这些技术实现了一个高效且可维护的HDFS文件词频统计
Windows安装部署Hadoop3.0.0并上传文件到HDFS
在中,我们将深入探讨如何在Windows环境下安装和部署Hadoop 3.0.0,并进行基本操作,如启动服务、上传文件到HDFS、创建目录以及运行MapReduce的WordCount示例。Hadoop是Apache基金会的开源项目,主要用于处理和存储大量数据,是大数据处理领域的重要工具。 1. 配置Hadoop:- 打开hadoop/etc/hadoop目录下的hadoop-env.sh(Windows下为hadoop-env.cmd),设置JAVA_HOME指向你的JDK安装路径。- 修改core-site.xml,配置HDFS的默认FS和通信缓冲区大小: fs.defaultFS hdf
审计全覆盖下大数据审计特征与发展路径分析
在审计全覆盖的背景下,大数据审计呈现出一些新的特征,并在国家审计领域迅速发展。大数据时代的到来为审计环境和审计模式带来了深刻变化,这一变化已成为审计领域的普遍共识。夏江华在其研究中,以审计全覆盖对工作效率的高要求为切入点,总结了大数据审计的三个基本特征,并围绕特征的结合点——内外部多维数据相关分析,探讨了大数据审计在实施过程中遇到的数据采集难题和人才短缺问题。随后,提出了通过审计人员和技术人员的有效协作,采取分阶段的方式提升和推进大数据审计的建议。 大数据审计的三个特征主要体现在以下方面: 一、审计效率的极大提高。传统的审计模式在面对使用财政资金的单位和项目时,往往需要几年一轮的方式实施审计,
Research and Application of MOOC Platform Learning Analytics Algorithm Based on Big Data
Big data technology has become a hot research topic in the field of education, focusing on analyzing large amounts of educational data collected to improve teaching methods and enhance education quality. Among educational big data, learning analytics is particularly important, as it helps teachers u
深入学习Yarn资源管理与作业调度机制
YARN是Hadoop 2.0中引入的一个子项目,它对Hadoop集群管理系统进行了重大的架构改进,解决了Hadoop 1.0中的一些关键问题,尤其是在扩展性和资源管理方面。YARN的主要功能是资源管理和作业调度/监视,它允许不同的数据处理框架共享同一个Hadoop集群资源。 YARN的核心组件包括:1. 资源管理器(ResourceManager,RM):负责整个集群的资源调度和任务分配,是YARN的主要协调者。2. 节点管理器(NodeManager,NM):运行在集群中的每个节点上,负责监视和管理该节点上的资源(如内存、CPU、磁盘、网络),并处理来自资源管理器的命令。3. 应用程序历史
大数据视域下公共决策模式之转变经验、数据与统合
大数据技术正在深刻地影响和改变公共决策的模式。在传统模式下,公共决策往往依赖于决策者的经验和直觉,这受到信息收集与处理能力的限制。大数据技术的应用,为政府提供了一个新视角和手段,它允许以更为科学的方式分析和响应社会事务,实现更好的资源配置,从而提升公共决策的质量和效率。大数据在公共决策中的应用,使得决策不再只是基于有限信息的经验式判断,而能通过大规模数据的实时收集和分析,进行更加精准和快速的响应。例如,在城市交通管理、医药卫生管理等领域,大数据技术已得到广泛应用,并在改善政策技术、廉洁政府、提升政府能力、推进国家治理现代化等方面发挥着显著作用。然而,公共决策并不仅仅是工具理性的体现,它还涉及到