在这个项目中,使用卡尔曼滤波器估算感兴趣的运动对象状态,并使用嘈杂的激光雷达和雷达测量。 Udacity提供的模拟器(可下载)生成嘈杂的RADAR和LIDAR测量对象的位置和速度,扩展卡尔曼滤波器必须融合这些测量值以预测对象位置。存储库包含两个文件,用于Linux或Mac系统安装。对于Windows,可以使用Docker,VMware或安装uWebSocketIO。执行指定操作构建和运行主程序。
数据融合matlab代码-CarND-Extended-Kalman-Filter无人驾驶汽车纳米学位课程项目1概述
相关推荐
无人驾驶汽车工程师纳米学位课程数据融合Matlab代码项目
在无人驾驶汽车工程师纳米学位课程中,涉及数据融合Matlab代码的项目,重点是扩展卡尔曼滤波器和传感器融合。操作系统要求包括CMake版本不低于3.5,对于Linux和苹果电脑,推荐使用GCC / G++版本不低于5.4。Windows用户则建议通过安装Xcode命令行工具来配置编译环境。项目构建和运行步骤包括克隆存储库,创建构建目录,进行CMake编译,并执行输出文件的生成。数据文件示例位于“数据/”目录下。
Matlab
0
2024-09-24
用卷积滤波器MATLAB代码-Udacity传感器融合纳米学位计划 我的学术成果
用卷积滤波器MATLAB代码Udacity传感器融合纳米学位课程,包括我在该学位项目中完成的作业和测验解决方案。这些内容将被整理到单独的目录中,每门课程一个目录,每门课程都有详细的构建说明。此外,存储库中还包含了YOLOv3在“相机”课程中的应用,您可以使用Git LFS来下载权重。访问Git LFS安装指南,克隆存储库后,在相应目录中使用以下内容下载YOLOv3权重:$ cd $ git lfs fetch。权重将保存在SFND_Camera/detect_objects/dat/yolov3.weights。需要注意的是,本课程的雷达部分使用MATLAB进行编程,因此您需要使用该软件来运行相关代码。虽然官方概述中未明确提到,只涉及C ++,但事实上,仅雷达部分需要MATLAB,而完成整个课程则并非必须。您可以选择在MATLAB或Octave中运行大多数代码,最终项目均可适用。此外,课程还简要介绍了卡尔曼滤波器的Python应用。
Matlab
2
2024-07-13
Matlab Implementing Car Model with Unscented Kalman Filter
Matlab建立汽车模型代码无味卡尔曼滤波器项目作者:克里斯·冈德林,自动驾驶汽车工程师。项目依赖:cmake >= 3.5, make >= 4.1, gcc/g++ >= 5.4。基本构建说明:克隆这个repo,在构建目录编译:cmake .. && make,然后运行:./UnscentedKF path/to/input.txt path/to/output.txt。您可以在data/目录中找到一些示例输入。例如:./UnscentedKF ../data/sample-laser-radar-measurement-data-1.txt output.txt。该项目提供了两个不同的行人跟踪数据集,包含激光和雷达测量。目标是创建一个无迹卡尔曼滤波器,使用CTRV运动模型预测行人位置,并融合来自激光和雷达测量的数据以更新位置。过滤器的跟踪路径、RMSE与地面实况的比较以及NIS一致性将在后续部分展示。我创建了一个Matlab脚本(./data/PlottingTool_UKF3.m)来可视化结果。结果表明,与实际数据的比较效果良好。
Matlab
0
2024-11-04
kalman_smoothing_filter_code_matlab_dynfactorR_restart
卡尔曼平滑滤波器代码:dynfactorR的重启
卡尔曼·克劳迪的代码用于动态因子模型的估计,目前宏观经济学中的大多数因子模型仅支持Matlab。该存储库包含用R重写的模型的小样本,尽管状态空间模型(动态因子模型的子集)在R的多个包中已可用(如MARSS),但出于速度和可理解性,在R中使用它是有益的。
最初,该代码是从Doz、Gianone和Reichlin (2011)的复制文件逐行重写而来。其目标是重构代码以提升可读性和可维护性,同时在数据丢失的情况下增加估计选项。完成后,计划将其打包成一个简单的R库。虽然原链接已不可用,Matlab复制文件仍然可以使用。
当前状态显示,只要q <= r且矩阵求逆保持稳定,开发分支可以支持任意的q、r和p。虽然尚未进行广泛的数值测试以确保正确性,但在Octave上对示例数据的原始代码进行了测试,结果相符,因此具有希望。当q != r时,原始代码似乎失效,需进一步调查。em_functions.R文件包含了相关功能。
Matlab
0
2024-11-04
Enhanced MATLAB Code for Unscented Kalman Filter in SDE Projects
Enhanced MATLAB Code for Unscented Kalman Filter Project: UKF
在无人驾驶汽车工程师纳米学位课程的项目中,UKF(无味卡尔曼滤波器)提供了一种更为优越的解决非线性问题的方法,相比之下,传统的扩展卡尔曼滤波器(EKF)存在一定的局限性。
UKF 的优势在于,它能够以平滑的速度估计周围动态对象的状态,即使噪声测量数据不断变化,也可以作为输入实现无延迟的估计结果。此外,UKF 可以借助无法直接观察的传感器数据,估算其他车辆的方向和偏航率。
在本项目中,通过无味卡尔曼滤波器,利用声呐和雷达测量来估算感兴趣运动物体的状态。项目的目标是实现 RMSE 值低于课程中规定的容差范围,项目包含一个可下载的 Term 2 模拟器。该项目的 GitHub 存储库包含必要的文件,便于在 Linux 或 Mac 系统上设置和安装,Windows 用户可以借助 Docker、VMware 或其他工具进行安装。
UKF 项目特点:- 协方差矩阵评估精度: UKF 提供了对每个估计结果的协方差矩阵,保证了结果的精度和一致性。- 多传感器数据整合:支持声呐和雷达数据的联合使用,有助于提高对象状态估计的准确性。- 跨平台支持:提供适用于不同系统的安装指南,确保项目在各种操作环境下的流畅运行。
参考:请访问 EKF 项目课程的 uWebSocketIO 入门页面,获取适用于您的系统的版本信息和安装说明。
Matlab
0
2024-11-05
INS_Kalman_Filter_Alignment_and_Inertial_Navigation_Calculation
惯导解算程序,实现了粗对准,卡尔曼滤波精对准,以及惯导解算,基于matlab程序,有六轴数据文件。
Matlab
0
2024-11-06
数据融合MATLAB代码注册和反卷积项目详解
数据融合MATLAB代码reg_deconProject是与《自然生物技术》38.11(2020)中郭敏等人的论文相关的注册和反卷积项目的完整代码集合。该存储库包含了文章报告的大部分功能和实现,除了深度学习模块DenseDeconNet外,所有代码均可在MATLAB环境中运行。用户可查阅附加资料以获取更多详细信息,并访问存储库。发行包中已经编译了C++/CUDA库的依赖项,并提供了源代码。此外,diSPIM数据处理程序已分离到另一个独立的存储库中进行维护。
Matlab
0
2024-09-23
Square Root Cubature Kalman Filter(CKF)and Comparison with UKF and EKF in MATLAB Simulation
本内容包括平方根容积卡尔曼滤波(CKF),无迹卡尔曼滤波(UKF),扩展卡尔曼滤波(EKF)的MATLAB仿真程序。详细展示了这三种滤波器的工作原理、优缺点,并提供了对应的仿真代码,帮助读者深入理解不同类型卡尔曼滤波器的应用。通过实际编程,用户可以掌握如何实现和比较这些滤波器在动态系统中的表现。
Matlab
0
2024-11-06
MATLAB项目自动驾驶汽车行人检测的深度学习解决方案
这个项目通过图像分析和学术研究,提供了用于自动驾驶汽车行人检测的MATLAB代码。采用了CNN和HOG特征提取方法,以实现高效的行人检测。
Matlab
0
2024-09-29