Enhanced MATLAB Code for Unscented Kalman Filter Project: UKF
在无人驾驶汽车工程师纳米学位课程的项目中,UKF(无味卡尔曼滤波器)提供了一种更为优越的解决非线性问题的方法,相比之下,传统的扩展卡尔曼滤波器(EKF)存在一定的局限性。
UKF 的优势在于,它能够以平滑的速度估计周围动态对象的状态,即使噪声测量数据不断变化,也可以作为输入实现无延迟的估计结果。此外,UKF 可以借助无法直接观察的传感器数据,估算其他车辆的方向和偏航率。
在本项目中,通过无味卡尔曼滤波器,利用声呐和雷达测量来估算感兴趣运动物体的状态。项目的目标是实现 RMSE 值低于课程中规定的容差范围,项目包含一个可下载的 Term 2 模拟器。该项目的 GitHub 存储库包含必要的文件,便于在 Linux 或 Mac 系统上设置和安装,Windows 用户可以借助 Docker、VMware 或其他工具进行安装。
UKF 项目特点:
- 协方差矩阵评估精度: UKF 提供了对每个估计结果的协方差矩阵,保证了结果的精度和一致性。
- 多传感器数据整合:支持声呐和雷达数据的联合使用,有助于提高对象状态估计的准确性。
- 跨平台支持:提供适用于不同系统的安装指南,确保项目在各种操作环境下的流畅运行。
参考:请访问 EKF 项目课程的 uWebSocketIO 入门页面,获取适用于您的系统的版本信息和安装说明。