此代码为高斯低通MATLAB代码,欢迎大家下载。
Gaussian Low-Pass Filter MATLAB Code
相关推荐
MATLAB Hamming Window Low-pass Filter Design
在本篇文章中,我们将介绍如何使用MATLAB进行汉明窗低通滤波器的设计。首先,选择适当的截止频率,接着定义汉明窗的参数,并根据所需的频率响应设计滤波器的滤波器系数。通过MATLAB中的内置函数,我们可以轻松实现滤波器的频率响应并进行性能验证。最终,通过频谱分析工具评估设计的滤波器效果,确保其满足信号处理的要求。
Matlab
0
2024-11-06
Trapezoidal Low Pass Filter(TLPF)Image Enhancement Techniques and MATLAB Simulation
梯形低通滤波器(TLPF)
在频域低通滤波法中,TLPF的性能与其他类型的低通滤波器(如ILPF、ELPF和BLPF)相比,表现出不同的特征。具体分析如下:
| 滤波器类型 | 振铃程度 | 图像模糊程度 | 噪声平滑效果 ||-------------|----------|--------------|----------------|| ILPF | 严重 | 较轻 | 无 || TLPF | 轻 | 较轻 | 很轻 || ELPF | 一般 | 一般 | 一般 || BLPF | 一般 | 一般 | 一般 |
参数说明
H(u,v): 滤波器函数
D0: 截止频率
D1: 频域变量
D(u,v): 距离函数
Matlab
0
2024-11-04
kalman_smoothing_filter_code_matlab_dynfactorR_restart
卡尔曼平滑滤波器代码:dynfactorR的重启
卡尔曼·克劳迪的代码用于动态因子模型的估计,目前宏观经济学中的大多数因子模型仅支持Matlab。该存储库包含用R重写的模型的小样本,尽管状态空间模型(动态因子模型的子集)在R的多个包中已可用(如MARSS),但出于速度和可理解性,在R中使用它是有益的。
最初,该代码是从Doz、Gianone和Reichlin (2011)的复制文件逐行重写而来。其目标是重构代码以提升可读性和可维护性,同时在数据丢失的情况下增加估计选项。完成后,计划将其打包成一个简单的R库。虽然原链接已不可用,Matlab复制文件仍然可以使用。
当前状态显示,只要q <= r且矩阵求逆保持稳定,开发分支可以支持任意的q、r和p。虽然尚未进行广泛的数值测试以确保正确性,但在Octave上对示例数据的原始代码进行了测试,结果相符,因此具有希望。当q != r时,原始代码似乎失效,需进一步调查。em_functions.R文件包含了相关功能。
Matlab
0
2024-11-04
Enhanced MATLAB Code for Unscented Kalman Filter in SDE Projects
Enhanced MATLAB Code for Unscented Kalman Filter Project: UKF
在无人驾驶汽车工程师纳米学位课程的项目中,UKF(无味卡尔曼滤波器)提供了一种更为优越的解决非线性问题的方法,相比之下,传统的扩展卡尔曼滤波器(EKF)存在一定的局限性。
UKF 的优势在于,它能够以平滑的速度估计周围动态对象的状态,即使噪声测量数据不断变化,也可以作为输入实现无延迟的估计结果。此外,UKF 可以借助无法直接观察的传感器数据,估算其他车辆的方向和偏航率。
在本项目中,通过无味卡尔曼滤波器,利用声呐和雷达测量来估算感兴趣运动物体的状态。项目的目标是实现 RMSE 值低于课程中规定的容差范围,项目包含一个可下载的 Term 2 模拟器。该项目的 GitHub 存储库包含必要的文件,便于在 Linux 或 Mac 系统上设置和安装,Windows 用户可以借助 Docker、VMware 或其他工具进行安装。
UKF 项目特点:- 协方差矩阵评估精度: UKF 提供了对每个估计结果的协方差矩阵,保证了结果的精度和一致性。- 多传感器数据整合:支持声呐和雷达数据的联合使用,有助于提高对象状态估计的准确性。- 跨平台支持:提供适用于不同系统的安装指南,确保项目在各种操作环境下的流畅运行。
参考:请访问 EKF 项目课程的 uWebSocketIO 入门页面,获取适用于您的系统的版本信息和安装说明。
Matlab
0
2024-11-05
Adaptive-Notch-Filter-Simulation-Code
本资源提供自适应陷波器的MATLAB仿真代码,包括级联型与并联型两种结构,实现方式灵活多样。用户可以选择单中心频率或多中心频率的功能,用于实现信号的自适应陷波和滤波。仿真结果显示,代码性能优秀,滤波效果良好,非常适合对信号处理有需求的工程师和研究人员。
Matlab
0
2024-11-05
Matlab Code for Boundary-GP Constrained Gaussian Processes with Variational Harmonic Features
在论文《知道边界:通过变分谐波特征约束高斯过程》(Arno Solin 和 Manon Kok,2019)中,介绍了一种用于约束高斯过程(GP)的新方法,该方法通过在傅立叶式广义谐波特征表示下处理边界条件,同时保持推理的低秩特性。这种方法可以在复杂的边界条件下应用GP模型,并通过变分推断来处理非高斯似然。
该研究在第22届国际人工智能与统计会议(AISTATS 2019)中展示,应用于一个具有硬决策边界的香蕉分类数据集,展现了增加归纳特征数量的效果。每个窗格中,彩色点代表训练数据,决策边界为黑线,最外面的线是预定义的硬决策边界。
该Matlab代码库包含了构建适用于任意形状域的基础函数代码,能够模拟受约束的GP随机绘制,并支持求解GP回归。此外,还提供了Python版本的代码,支持在任意形状域中构建基础函数并进行非高斯似然的变分推断。
Matlab
0
2024-11-05
Gaussian White Noise MATLAB Code-PE-GAMP with Built-in Parameter Estimation
高斯白噪声 MATLAB 代码示例:
% 生成高斯白噪声
mu = 0; % 均值
sigma = 1; % 标准差
N = 1000; % 样本数
noise = mu + sigma * randn(N, 1);
% 绘制噪声信号
figure;
plot(noise);
title('Gaussian White Noise Signal');
xlabel('Sample Index');
ylabel('Amplitude');
此代码用于生成和可视化高斯白噪声信号,并可以在后续的图像处理算法中应用。
Matlab
0
2024-11-03
Gaussian Elimination with Partial Pivoting in MATLAB
此函数使用带旋转的高斯消元法求解线性系统Ax=b。该算法概述如下: 1) 初始化一个置换向量r = [1, 2,...,n],其中r(i)对应于A中的第i行。 2) 对于k = 1,...,n-1,找到a(r(k),a(r(k+1),k),...,a(r(n),k)中最大的(绝对值)元素。 3) 假设r(j,k)是最大的元素,切换r(j)和r(k)。 4) 对于i=1,...,k-1,k+1,...,n计算:zeta = a(r(i),k) / a(r(k),k)。 5) 对于j=k,...,n,计算:a(r(i),j)=a(r(i),j)-a(r(k),j)*zeta,b(r(i)) = b(r(i))-b(r(k))*zeta。 6) 步骤1到6有效地对角化了A。 7) 解向量中的每个元素为:x(r(i)) = b(i)/a。
Matlab
0
2024-11-03
Gaussian Elimination Method Implementation in MATLAB
高斯消元法的MATLAB实现代码,提供了关于矩阵操作的优质源程序。希望大家积极下载,感谢支持!
Matlab
0
2024-11-04