在论文《知道边界:通过变分谐波特征约束高斯过程》(Arno Solin 和 Manon Kok,2019)中,介绍了一种用于约束高斯过程(GP)的新方法,该方法通过在傅立叶式广义谐波特征表示下处理边界条件,同时保持推理的低秩特性。这种方法可以在复杂的边界条件下应用GP模型,并通过变分推断来处理非高斯似然。

该研究在第22届国际人工智能与统计会议(AISTATS 2019)中展示,应用于一个具有硬决策边界的香蕉分类数据集,展现了增加归纳特征数量的效果。每个窗格中,彩色点代表训练数据,决策边界为黑线,最外面的线是预定义的硬决策边界。

该Matlab代码库包含了构建适用于任意形状域的基础函数代码,能够模拟受约束的GP随机绘制,并支持求解GP回归。此外,还提供了Python版本的代码,支持在任意形状域中构建基础函数并进行非高斯似然的变分推断。