了解如何利用最新的问题驱动方法在R2017b版本中设定和解决线性和混合整数线性优化问题。这一新方法极大地简化了LP和MILP问题的设置和运行。这些问题涉及金融、能源、物流、供应链和运筹学等多个领域。详情请访问网络研讨会链接:https://www.mathworks.com/videos/mixed-integer-linear-programming-in-matlab-91541.html。
MATLAB中的线性和混合整数线性规划优化方案探索
相关推荐
线性规划的MATLAB优化方法
无约束规划
非线性规划
Matlab
3
2024-05-25
Matlab源码与运筹学:从线性规划到整数规划
Matlab源码助力运筹学
线性回归模型的实现
在使用Matlab代码实现线性回归模型时,需要先确定模型的形式,然后利用linprog()函数进行求解。需要注意的是,Matlab中的线性模型需要符合标准形式。因此在使用linprog()函数之前,需要将非标准化的数学形式转换为标准形式。
灵敏度分析
灵敏度分析主要研究模型参数的变化对最优解和最优基的影响。模型参数的变化通常包括以下三个方面:
目标函数系数的变化
约束条件右端值的变化
目标函数中价值系数的变化
针对每种不同的参数变化,都有相应的解决方法。
### 运输问题
运输问题通常涉及多个产地和销地,并存在产销平衡或产销不平衡的情况。这类问题可以通过线性规划方法解决。由于其约束条件的系数矩阵具有特殊结构,可以使用更简单的计算方法,即表上作业法。
通常使用最小元素法、最大差额法或西北角法来求得初始基本解,然后利用位势法或闭回路法检验其是否为最优基。
整数规划
整数规划是在线性规划模型的基础上,添加了决策变量必须为整数的约束条件。解决整数规划问题的方法主要有分支定界法和割平面法。
这两种方法在求解初期都不考虑整数约束条件,而是先求出最优解,再逐步进行调整以满足整数约束。
Matlab
4
2024-05-25
基于线性规划的促销策略优化
利用 RFM 指标和响应-价值系数,通过线性规划模型,可以优化促销策略,以最大化预期收益。
模型考虑了每个促销活动的成本、参与人数上限和下限,以及客户参与促销活动总次数的限制。
通过求解该模型,可以确定最佳的促销活动组合以及每个活动的目标客户。
例如,根据表 3 和表 4 的数据,企业应选择开展第 1、2、3 和 5 项促销活动,并根据 xij 的值确定每个活动的目標客户。
数据挖掘
4
2024-05-21
使用Matlab解决线性规划问题
四、在模型1中,由于a是任意给定的风险度,不同的投资者有不同的风险偏好。我们从a=0开始,以步长△a=0.001进行循环搜索,编写的程序如下:
Matlab
0
2024-09-01
Python实现线性规划模型
以下是使用Python实现线性规划模型的代码示例。线性规划是一种优化问题的数学方法,通过定义目标函数和约束条件来求解最优解。Python提供了多种库和工具来进行线性规划模型的实现和求解。
算法与数据结构
0
2024-09-18
Matlab实现非线性规划优化-NonlinearPrograming.zip
Matlab非线性规划实现## 使用Matlab函数 fmincon() 和 optimproblem() 进行优化。
Matlab
0
2024-08-05
Matlab优化方法下的非线性规划基础概念
在Matlab优化方法的指导下,探讨非线性规划的基础概念。
Matlab
0
2024-09-24
基于MATLAB的线性规划:算法与应用
基于MATLAB的线性规划:算法与应用
本书深入探讨了多种线性规划算法和方法,并辅以计算演示,其中着重介绍了改进的单纯形法及其组成部分。对于每种算法,本书都提供了理论背景、数学公式、完整的数值示例以及相应的MATLAB代码实现。这些实现经过精心设计,即使面对大规模的基准线性规划问题,用户也能找到解决方案。
书中对每种算法都进行了基于基准问题的计算研究,分析了算法的计算行为。作为对现有特定算法文献的补充,这本书对于具备线性代数和微积分基础的研究人员、科学家、数学程序员和学生都非常有价值。
读者能够通过清晰的讲解理解和应用单纯形法的所有组成部分,包括预求解技术、缩放技术、数据透视规则、基更新方法以及敏感性分析。
Matlab
3
2024-05-26
灰色线性规划在水产养殖中的应用
考虑到约束条件值和技术系数的不确定性,灰色线性规划将约束条件中的技术系数表示为灰区间数,解决可取区间内的任意值,从而增加规划问题的可行解域,有效解决参数固定不变导致规划问题无解的难题。
数据挖掘
5
2024-04-30