事件概率计算:卡尔曼滤波、H∞滤波及非线性滤波应用
探讨在 X 和 Y 中至少有一个小于 0.5 的概率,以及从 (0,1) 中随机选取两个数,其积不小于 3/16 且其和不大于 1 的概率的计算方法。
问题一:假设 X 和 Y 是随机变量,求 X 和 Y 中至少有一个小于 0.5 的概率。
问题二:假设 X 和 Y 分别表示从 (0,1) 中随机选取的两个数,求其积不小于 3/16 且其和不大于 1 的概率。
这两个问题涉及概率计算,可以使用卡尔曼滤波、H∞滤波和非线性滤波等方法来解决。这些方法可以用于估计系统的状态,并基于这些估计来计算事件的概率。
算法与数据结构
3
2024-05-20
统计量及其分布:估计最优状态-卡尔曼滤波、h∞滤波和非线性滤波
总体:该地区的所有电视用户
样本:被访问的电话用户
总体:任意100名成年男子中吸烟人数
样本:50名学生调查所得的吸烟人数,每位学生调查100人
总体:每一盒盒装产品的不合格品数
样本:被抽取的n盒产品中每一盒的不合格品数
总体:鱼塘中的所有鱼
样本:一天后再从鱼塘里打捞出的一网鱼
总体:该厂生产的全体电容器的寿命
样本:被抽取的n件电容器
算法与数据结构
5
2024-04-30
多重比较方法卡尔曼滤波、h∞和非线性滤波的最优状态估计
在统计学中,多重比较方法不仅限于整体检验,还涉及各组间效应差的点估计和置信区间的计算。对于多个总体均值的比较,我们通过效应差的统计推断,来评估各组之间的显著性差异。
算法与数据结构
0
2024-09-24
一元线性回归的最优状态估计卡尔曼滤波、H∞及非线性滤波
在实际工作中,通常需要分析两个随机变量之间的关系,例如圆的半径与面积之间的关系,人的身高与体重之间的关系,以及国家的GDP与年份之间的关系等。这些关系可以分为确定性关系和相关关系两类。确定性关系指的是可以通过一个变量的值确定另一个变量的值,例如圆的半径和面积的函数关系。相关关系则表明两个变量的取值有一定联系,但一个变量的值不能完全决定另一个变量的值,例如人的身高与体重之间的关系。对于具有相关关系的变量,可以在平均意义下描述它们的近似关系。回归分析即用于分析这种相关关系的方法,通过回归函数来表达两个变量在平均意义下的函数关系。在回归分析中,一个变量作为自变量,另一个变量作为因变量,因变量是随机变量,而自变量可以是普通变量或随机变量。回归分析假设自变量为可控变量,而因变量则包含随机误差项。
算法与数据结构
1
2024-07-14
计算e-最优状态估计卡尔曼,h∞及非线性滤波
通过重复计算得到统计量Q的多个观测值,并根据显著水平α来判断µ之间的显著差异,从而确定最优状态估计卡尔曼、h∞和非线性滤波的适用性。
算法与数据结构
0
2024-08-08
卡尔曼,h∞及非线性滤波的样本联合密度函数估计
样本联合密度函数为∑∑ == −− − = ∏∏ m i i n i i ii yx mny m i x n i mn yyxxp 1 2 1 1 21 eee),;,,,,,( 21 1 2 1 12111 λλλλλλLL ,似然函数∑∑ = == −− m i i n i i yx mnL 1 2 1 1 e),( 2121 λλλλ , ∑∑ == −−+= m i j n i i yxmnL 1 2 1 12121 lnln),(ln λλλ ,令⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ =−= ∂ ∂ ∑ ∑ = = .0 ln ;0 ln 122 111 m i i n i i y nL x nL λλ得∑ = = n i ix n 1 1λ , ∑ = = m i iy m 1 2λ ,则mn mm i i nn i i mn yx mn yyxxp −− == ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = ∑∑ e),;,,,,,(sup 11 2111 , 21 λλ LL ,当λ1 = λ2时,似然函数⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ +− + ∑∑ = == m i i n i i yx mnL 11 1 e)( 11 λ λλ , ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +−+= ∑∑ == m i j n i i yxmnL 111 ln)()(ln λλλ ,令0 )(ln 1111 1 =⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +− + = ∑∑ == m i j n i i yx mn d Ld λλ λ ,得∑∑ == + + = m i i n i i yx mn 11 1λ ,则mn mnm i i n i i mn yx mn yyxxp −−+ == + = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + + = ∑∑ e )( ),;,,,,,(sup 11 21 λλ LL ,故似然比检验统计量为mm i i nn i i mnm i i nn mn YXmn YYXXp YYXX ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + ==Λ ∑∑ == + + == = 11 2111 , 11 )( ),;,,,,,(sup ),,,,,( 21 λλ LL m m i i n n i i mn nn m m i i n i i n n i i m i i n
算法与数据结构
2
2024-05-26
对比无迹卡尔曼滤波与扩展卡尔曼纳滤波
比较了无迹卡尔曼滤波和扩展卡尔曼纳滤波在预测性能上的差异,提供一个程序可改的比较框架,方便根据需求自定义函数。
Matlab
1
2024-08-04
卡尔曼滤波理论与应用
概述了卡尔曼滤波的理论和应用,包括卡尔曼滤波简介和相关资料。
Matlab
7
2024-05-15
卡尔曼滤波:原理与实现
卡尔曼滤波:原理与实现
原理:卡尔曼滤波是一种用于估计状态(位置和速度等)的递归算法,该算法考虑了测量不确定性和过程噪声。其核心思想是使用来自过程模型的预测估计和来自测量模型的测量估计,通过加权平均来得到最优估计。
实现:卡尔曼滤波可以使用各种编程语言实现,包括 MATLAB、C 和 C++。实现时需要指定过程模型、测量模型、初始状态估计和协方差矩阵。
应用:卡尔曼滤波广泛应用于各种领域,例如导航、控制和数据处理。它可以有效地处理测量不确定性和过程噪声,并为动态系统提供准确的状态估计。
Matlab
2
2024-05-30