卡尔曼滤波:原理与实现
原理:
卡尔曼滤波是一种用于估计状态(位置和速度等)的递归算法,该算法考虑了测量不确定性和过程噪声。其核心思想是使用来自过程模型的预测估计和来自测量模型的测量估计,通过加权平均来得到最优估计。
实现:
卡尔曼滤波可以使用各种编程语言实现,包括 MATLAB、C 和 C++。实现时需要指定过程模型、测量模型、初始状态估计和协方差矩阵。
应用:
卡尔曼滤波广泛应用于各种领域,例如导航、控制和数据处理。它可以有效地处理测量不确定性和过程噪声,并为动态系统提供准确的状态估计。