样本联合密度函数为∑∑ == −− − = ∏∏ m i i n i i ii yx mny m i x n i mn yyxxp 1 2 1 1 21 eee),;,,,,,( 21 1 2 1 12111 λλλλλλLL ,似然函数∑∑ = == −− m i i n i i yx mnL 1 2 1 1 e),( 2121 λλλλ , ∑∑ == −−+= m i j n i i yxmnL 1 2 1 12121 lnln),(ln λλλ ,令⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ =−= ∂ ∂ ∑ ∑ = = .0 ln ;0 ln 122 111 m i i n i i y nL x nL λλ得∑ = = n i ix n 1 1λ , ∑ = = m i iy m 1 2λ ,则mn mm i i nn i i mn yx mn yyxxp −− == ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = ∑∑ e),;,,,,,(sup 11 2111 , 21 λλ LL ,当λ1 = λ2时,似然函数⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ +− + ∑∑ = == m i i n i i yx mnL 11 1 e)( 11 λ λλ , ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +−+= ∑∑ == m i j n i i yxmnL 111 ln)()(ln λλλ ,令0 )(ln 1111 1 =⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +− + = ∑∑ == m i j n i i yx mn d Ld λλ λ ,得∑∑ == + + = m i i n i i yx mn 11 1λ ,则mn mnm i i n i i mn yx mn yyxxp −−+ == + = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + + = ∑∑ e )( ),;,,,,,(sup 11 21 λλ LL ,故似然比检验统计量为mm i i nn i i mnm i i nn mn YXmn YYXXp YYXX ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + ==Λ ∑∑ == + + == = 11 2111 , 11 )( ),;,,,,,(sup ),,,,,( 21 λλ LL m m i i n n i i mn nn m m i i n i i n n i i m i i n
卡尔曼,h∞及非线性滤波的样本联合密度函数估计
相关推荐
计算e-最优状态估计卡尔曼,h∞及非线性滤波
通过重复计算得到统计量Q的多个观测值,并根据显著水平α来判断µ之间的显著差异,从而确定最优状态估计卡尔曼、h∞和非线性滤波的适用性。
算法与数据结构
0
2024-08-08
一元线性回归的最优状态估计卡尔曼滤波、H∞及非线性滤波
在实际工作中,通常需要分析两个随机变量之间的关系,例如圆的半径与面积之间的关系,人的身高与体重之间的关系,以及国家的GDP与年份之间的关系等。这些关系可以分为确定性关系和相关关系两类。确定性关系指的是可以通过一个变量的值确定另一个变量的值,例如圆的半径和面积的函数关系。相关关系则表明两个变量的取值有一定联系,但一个变量的值不能完全决定另一个变量的值,例如人的身高与体重之间的关系。对于具有相关关系的变量,可以在平均意义下描述它们的近似关系。回归分析即用于分析这种相关关系的方法,通过回归函数来表达两个变量在平均意义下的函数关系。在回归分析中,一个变量作为自变量,另一个变量作为因变量,因变量是随机变量,而自变量可以是普通变量或随机变量。回归分析假设自变量为可控变量,而因变量则包含随机误差项。
算法与数据结构
1
2024-07-14
多重比较方法卡尔曼滤波、h∞和非线性滤波的最优状态估计
在统计学中,多重比较方法不仅限于整体检验,还涉及各组间效应差的点估计和置信区间的计算。对于多个总体均值的比较,我们通过效应差的统计推断,来评估各组之间的显著性差异。
算法与数据结构
0
2024-09-24
统计量及其分布:估计最优状态-卡尔曼滤波、h∞滤波和非线性滤波
总体:该地区的所有电视用户
样本:被访问的电话用户
总体:任意100名成年男子中吸烟人数
样本:50名学生调查所得的吸烟人数,每位学生调查100人
总体:每一盒盒装产品的不合格品数
样本:被抽取的n盒产品中每一盒的不合格品数
总体:鱼塘中的所有鱼
样本:一天后再从鱼塘里打捞出的一网鱼
总体:该厂生产的全体电容器的寿命
样本:被抽取的n件电容器
算法与数据结构
5
2024-04-30
事件概率计算:卡尔曼滤波、H∞滤波及非线性滤波应用
探讨在 X 和 Y 中至少有一个小于 0.5 的概率,以及从 (0,1) 中随机选取两个数,其积不小于 3/16 且其和不大于 1 的概率的计算方法。
问题一:假设 X 和 Y 是随机变量,求 X 和 Y 中至少有一个小于 0.5 的概率。
问题二:假设 X 和 Y 分别表示从 (0,1) 中随机选取的两个数,求其积不小于 3/16 且其和不大于 1 的概率。
这两个问题涉及概率计算,可以使用卡尔曼滤波、H∞滤波和非线性滤波等方法来解决。这些方法可以用于估计系统的状态,并基于这些估计来计算事件的概率。
算法与数据结构
3
2024-05-20
多维随机变量及其分布-卡尔曼、h∞及非线性滤波的最佳状态估计
第三章中,多维随机变量及其分布的习题3.1是关于100件商品中一等品50件、二等品30件、三等品20件的问题。从中任取5件商品,用X和Y分别表示选出的5件中一等品和二等品的数量。在不放回抽取和有放回抽取两种情况下,求(X, Y )的联合分布列。解答显示,(X, Y )的分布分别为多维超几何分布和多项分布。
算法与数据结构
2
2024-07-24
深入解析:卡尔曼滤波、H∞滤波与非线性滤波的优越性
滤波技术对比分析
卡尔曼滤波、H∞ 滤波和非线性滤波,各自在状态估计领域中扮演着重要的角色,它们针对不同的应用场景和噪声特性,提供了独特的优势:
卡尔曼滤波: 在处理高斯白噪声线性系统时,卡尔曼滤波能够提供最优的估计结果。它基于系统的状态空间模型,通过预测和更新步骤,不断修正对系统状态的估计,从而实现对系统状态的实时跟踪。
H∞ 滤波: 当系统受到未知的噪声或干扰时,H∞ 滤波能够有效地抑制噪声的影响,保证估计误差在一定范围内。它通过最小化估计误差的 H∞ 范数,实现对系统状态的鲁棒估计。
非线性滤波: 针对非线性系统,非线性滤波提供了多种方法来应对状态估计的挑战,例如扩展卡尔曼滤波 (EKF)、无迹卡尔曼滤波 (UKF) 和粒子滤波 (PF) 等。这些方法通过不同的线性化或采样技术,近似非线性系统的状态估计问题,并提供相应的解决方案。
总而言之,选择合适的滤波方法取决于具体的应用场景和噪声特性。卡尔曼滤波适用于线性系统和高斯白噪声,H∞ 滤波适用于存在未知噪声或干扰的情况,而非线性滤波则适用于非线性系统的状态估计。
算法与数据结构
7
2024-04-30
MATLAB卡尔曼滤波RUL估计项目实现
MATLAB卡尔曼滤波相关代码剩余使用寿命估计。该存储库保存了在代尔夫特理工大学传感器信号和数据处理课程中进行的涡扇发动机剩余使用寿命估计项目的结果。实现的估计技术依赖于扩展卡尔曼滤波器。所有可视化和实现相关的任务都是在MATLAB中进行的。代码在三个不同的文件中提供:RUL_data_exploration.m、RUL_function_derivations.m和RUL_EKF_implementation_evaluation.m,以及所需的(MATLAB)数据文件RUL_data.mat。为了便于理解,代码附有注释。每个文件都可以单独执行。除了数据和代码之外,还包括相关报告[SSDP] Remaining Useful Lifetime estimation M. Hulsebos.pdf。该报告讨论了实施细节,并提供了评估结果以及与并发方法的比较。
Matlab
0
2024-11-03
非线性参数下的样本熵函数
这是一个Matlab代码示例,展示了样本熵函数的非线性参数形式。通过对函数参数进行赋值,可以灵活调用并计算样本熵。
算法与数据结构
0
2024-08-24