最优状态估计

当前话题为您枚举了最新的最优状态估计。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

最优状态估计Kalman滤波及其非线性变体.rar
这个压缩包包含了40个Matlab代码文件,涵盖了最优状态估计Kalman滤波及其非线性变体的多个应用场景,是研究者和工程师的宝贵资源。
计算e-最优状态估计卡尔曼,h∞及非线性滤波
通过重复计算得到统计量Q的多个观测值,并根据显著水平α来判断µ之间的显著差异,从而确定最优状态估计卡尔曼、h∞和非线性滤波的适用性。
多重比较方法卡尔曼滤波、h∞和非线性滤波的最优状态估计
在统计学中,多重比较方法不仅限于整体检验,还涉及各组间效应差的点估计和置信区间的计算。对于多个总体均值的比较,我们通过效应差的统计推断,来评估各组之间的显著性差异。
NPU最优估计大作业Matlab代码实现最优估计及2D-SLAM
姓名:刘振博 学号:201920 完成工作:一维状态量的Kalman Filter仿真,二维状态量的Extended Kalman Filter仿真,应用EKF实现2D-SLAM。系统建模:x+ = F_x * x + F_u * u + F_n * n,y = H * x + v。其中:F_x = 1;F_u = 1;F_n = 1;u = 1;H = 0.5;Q = 1;R = 1。状态先验:x = 0;P = 1e4。仿真初值:X = 7。仿真结果:二维状态量的EKF仿真系统模型:x+ = f(x, u, n),y = h(x) + v。系统定义:x = [px py vx vy]',y = [d, a]',u = [ax, ay]',n = [nx, ny]',v = [vd, va]'。px+ = px + vx * dt,py+ = py + vy * dt,vx+ = vx + ax * dt + nx,vy+ = vy + ay * dt + ny,d = sqrt(px^2 + py^2)。
统计量及其分布:估计最优状态-卡尔曼滤波、h∞滤波和非线性滤波
总体:该地区的所有电视用户 样本:被访问的电话用户 总体:任意100名成年男子中吸烟人数 样本:50名学生调查所得的吸烟人数,每位学生调查100人 总体:每一盒盒装产品的不合格品数 样本:被抽取的n盒产品中每一盒的不合格品数 总体:鱼塘中的所有鱼 样本:一天后再从鱼塘里打捞出的一网鱼 总体:该厂生产的全体电容器的寿命 样本:被抽取的n件电容器
一元线性回归的最优状态估计卡尔曼滤波、H∞及非线性滤波
在实际工作中,通常需要分析两个随机变量之间的关系,例如圆的半径与面积之间的关系,人的身高与体重之间的关系,以及国家的GDP与年份之间的关系等。这些关系可以分为确定性关系和相关关系两类。确定性关系指的是可以通过一个变量的值确定另一个变量的值,例如圆的半径和面积的函数关系。相关关系则表明两个变量的取值有一定联系,但一个变量的值不能完全决定另一个变量的值,例如人的身高与体重之间的关系。对于具有相关关系的变量,可以在平均意义下描述它们的近似关系。回归分析即用于分析这种相关关系的方法,通过回归函数来表达两个变量在平均意义下的函数关系。在回归分析中,一个变量作为自变量,另一个变量作为因变量,因变量是随机变量,而自变量可以是普通变量或随机变量。回归分析假设自变量为可控变量,而因变量则包含随机误差项。
贝叶斯估计示例状态估计问题的matlab实现
我们在这个示例中使用了两个传感器对状态(x)进行了测量。传感器1给出的测量值为x1=3,传感器2给出的测量值为x2=5。传感器1的噪声是零均值高斯噪声,方差为1;传感器2的噪声是零均值高斯噪声,方差为0.25。我们通过贝叶斯估计求解x及其方差的MMSE估计。根据附加的代码,我们得到状态x的期望值为4.6,方差为0.2。这个结果可能与卡尔曼滤波器的估计有关。
HyperLog:一种近似最优基数估计算法的分析
HyperLog 算法在基数估计领域展现出接近最优的性能。本研究深入分析 HyperLog 算法的运行机制,揭示其如何在有限的内存资源下,高效地估计大型数据集的基数。
混沌算法的MATLAB代码参数和状态估计的MATLAB实现
这是我在2011年编写的用于联合估计混沌序列参数和状态的MATLAB代码。该算法基于Nakamura等人(2007年)的工作,通过改进非线性动力系统噪声时间序列的参数估计方法。我使用连续平均法修改了原方法,以实现更平滑的估计结果。该方法应用于混沌驱动队列中的混沌到达模式,这些模式具有确定性和不可预测性,允许分析队列的瞬态属性,并通过网络传播复杂的队列模式。相关研究已在Chow(2013年)的工作中得到验证,该研究提出了用于排队分析的可观察混沌图。
卡尔曼滤波在状态估计中的应用及其教学PPT
从开始观测时的初始条件k=0出发,利用等式(4)和(5)进行递推计算:当k=0时,值为1.0000;当k=1时,值为0.5000;当k=2时,值为0.4048;当k=3时,值为0.3824;当k=4时,值为0.3768;当k=5时,值为0.3755;当k=6时,值为0.3751;当k=7时,值为0.3750。这些数值展示了在未达到稳态之前的递推过程。