最新实例
GloVe.6B.50d用于情感分析的预训练词向量与Captum结合
glove.6B.50d.zip是一个包含预训练词向量的压缩文件,主要用于自然语言处理(NLP)任务。GloVe(Global Vectors for Word Representation)是斯坦福大学开发的一种词嵌入方法,通过统计词汇共现矩阵来捕捉词汇之间的语义和语法关系。“6B”表示这些向量基于大约60亿个词汇项的大规模语料库训练,而“50d”则意味着每个词汇被表示为50维的向量。描述中的Captum是一个由PyTorch团队维护的解释性机器学习库,提供了理解模型预测行为的API,帮助可视化和解析神经网络的内部工作原理。在情感分析任务中,Captum可以洞察模型如何对特定输入进行情感分类。在本案例中,将预训练的GloVe向量与Captum结合,用于构建或增强情感分析模型。GloVe向量可以作为输入层的一部分,将文本数据转换成向量形式,帮助模型学习词汇的语义含义。在情感分析中,模型识别文本中的积极、消极或中性情绪,使用预训练的GloVe向量可利用已有的词汇关系进行准确推断。解压后得到的glove.6B.50d.txt文件包含每一行一个词汇及其对应的50维向量,在构建模型时可以作为初始权重或用于新词汇的向量表示。这些资源对提高模型的性能和可解释性具有重要意义。
Python在数学建模比赛中的应用与代码示例
在数学建模比赛中,Python语言由于其易读性、丰富的库支持和强大的计算能力,成为了参赛者们首选的编程工具。本资源集合了数学建模比赛中常用的30个算法,并以Python代码的形式呈现,这对于参赛者来说是一份非常实用的参考资料。Python的基础语法是所有算法实现的基石。理解变量定义、数据类型(如整型、浮点型、字符串、列表、元组、字典等)、条件语句(if-else)、循环结构(for、while)以及函数的使用是至关重要的。同时,掌握异常处理(try-except)能帮助编写健壮的代码。在数学运算方面,Python的math库提供了大量的数学函数,如三角函数、指数与对数、幂运算、圆周率等,这些都是解决数学模型的基础。numpy库则进一步提供了多维数组操作,支持矩阵运算,对于线性代数问题尤其有用。例如,解线性方程组可以借助numpy的linalg.solve()函数。对于统计分析,pandas库提供了DataFrame和Series数据结构,便于数据清洗、处理和分析。它包含了描述性统计、数据分组、时间序列分析等功能。scipy库则提供了更多高级统计函数,如最小二乘法、回归分析、假设检验等。在优化问题中,scipy.optimize模块提供了各种优化算法,如梯度下降、牛顿法、模拟退火、遗传算法等,可用于寻找函数的最小值或最大值。对于线性规划问题,可以使用pulp或者cvxopt库。在绘图方面,matplotlib库是Python最常用的可视化库,可以创建2D和3D图形,对于结果展示和数据分析非常有帮助。seaborn库基于matplotlib,提供了更高级的接口,使得数据可视化更加美观且直观。机器学习是现代数学建模的重要组成部分。sklearn库提供了多种监督和无监督学习算法,如线性回归、逻辑回归、决策树、随机森林、支持向量机、聚类等,能够用于预测和分类问题。此外,网络爬虫(如requests和BeautifulSoup库)在获取和预处理大量数据时发挥作用,而nltk库则适用于自然语言处理任务。在实际应用中,参赛者还需要了解如何利用Python进行文件操作(如读写CSV、JSON等格式),以及如何调用外部程序或API(如使用os和subprocess模块)。这份“数学建模比赛常用代码python版”涵盖了数学建模所需的基础知识和高级技巧,包括但不限于基础编程、数学运算、
Mining Massive Datasets Overview
Mining of Massive Datasets is based on Stanford Computer Science course CS246: Mining Massive Datasets (and CS345A: Data Mining). The book is designed for undergraduate computer science students with no formal prerequisites. Most chapters include further reading references for deeper exploration. It has been published by Cambridge University Press. You can get a 20% discount using the code MMDS20 at checkout. The book is available for free download from this page, but Cambridge University Press retains copyright, so please obtain permission and acknowledge authorship for any republication. Feedback on the manuscript is welcome.
Big Data Technologies in Smart Transportation Systems
随着科技的迅猛发展,大数据时代为智能交通领域带来了诸多变革。将探讨在大数据时代背景下,人工智能、大数据等新技术在智能交通中的应用,以及这些技术如何推动智能交通系统的重大变革。\\智能交通系统面临的主要痛点包括信息资源整合、数据智能分析决策、大数据全生命周期的新技术应用、信息主动推送以及智能网联汽车的发展等。这些痛点需要通过采用新技术来解决,从而提升交通系统的效率、安全性和智能化水平。\\信息资源整合是智能交通发展的基础。通过整合来自不同交通参与者和交通基础设施的数据资源,可以实现信息共享和互联互通。这不仅提高了数据的可用性,还能够通过大数据分析技术,对交通模式进行深入挖掘和预测,为交通管理和规划提供决策支持。\\数据智能分析决策在智能交通中的应用是大数据技术的核心。通过对海量交通数据的智能分析,可以优化交通流量、降低事故率、减少拥堵现象。例如,基于机器学习和数据挖掘技术,可以构建模型预测交通流、识别交通违规行为及制定最优交通信号控制策略。\\大数据全生命周期管理是智能交通中的另一个关键技术。从数据收集、存储、处理到分析和应用,每一个环节都至关重要。大数据技术使得从海量数据中提取有价值信息成为可能,包括实时数据、历史数据和预测数据。\\信息主动推送是提升交通系统智能化程度和用户体验的重要手段。通过分析用户需求和实时交通状况,可以主动向驾驶员或乘客提供个性化的交通信息,如路况信息、交通管制通知、公交路线推荐等。\\智能网联汽车技术的发展,是智能交通领域最引人注目的趋势之一。智能网联汽车通过与交通基础设施、其他车辆及互联网的互联互通,能够实现安全驾驶、自动泊车、远程控制等功能,极大提升了驾驶的便捷性和安全性。\\在研究现状方面,智能视频分析、交通信号控制、智能交通平台应用及智能网联汽车等领域已取得一些进展。例如,智能视频分析技术在交通监控和事故检测中的应用逐渐成熟,交通信号控制系统正在向智能化、动态化方向发展,智能交通平台则提供了更加集成化的交通管理解决方案。新技术的应用,如自然语言处理、计算机视觉、智能化交通信号控制、汽车电子标识、数据湖蓝光存储等,正在智能交通领域带来革命性的变化。
Open Collaboration VESA Organization's DVI Standards
8.2 开放合作 我们希望在自身发展的同时,将京东大数据的能力和资源能够对外开放,和合作伙伴一起成长,为中国的大数据产业发展贡献力量,开放的策略包括:- 技术平台和产品京东大数据在大数据的采集、存储、加工、分析挖掘等技术领域积累了丰富的经验,并自主研发了数据开发平台、数据采集工具、可视化产品、元数据及数据质量管理平台、任务调度工具等一系列的技术平台产品,在数据安全管理、数据质量管理、大数据平台智能运维等有完整有效的策略。未来将输出这些技术平台和产品,帮助其他企业一起完成大数据技术平台的建设。- 行业应用解决方案京东大数据致力于用大数据、人工智能等技术打造创新应用,驱动企业业务增长和提升企业运营效率。京东智能门店解决方案由“智能货架”、“智能感知摄像头”、“智能称重结算台”、“智能广告牌”四个部分组成,实现知人、知货、知场景的购物体验。智能门店解决方案不仅能够实现“无人店”的体验效果,更重要的是能够针对现有的线下实体店铺进行低成本的升级改造,实现智能化。这套解决方案今后也将应用于全国的京东便利店、京东3C的京东之家、京东专卖店等,同时独有的模块化组装模式,更可扩展到超市、便利店、加油站、机场、酒店等应用场景。未来,我们希望和行业合作伙伴一起推进。
请各位大佬帮忙审阅
各位大佬哥哥可以帮我看一下吗
2017国赛国家一等奖B题优秀论文集
2017国赛国家一等奖B题优秀论文7篇
Snowflake_Model_Chapter3_Data_Warehouse
雪花模型是星形模型的拓展,在事实表和维度表的基础上,增加了一类新表—— 详细类别表,用于对维度表进行描述。雪花模型的维度表具有较小的数据冗余,易于维护,节省存储空间,具有较高的灵活性。
利用深度稀疏自动编码器实现高维矩阵降维与特征提取
深度稀疏自动编码器(Deep Sparse Autoencoder, DSAE)是一种神经网络模型,用于学习数据的非线性表示,特别是在高维数据的降维和特征提取方面表现出色。在本场景中,我们使用MATLAB编程环境来实现这一技术,以处理节点相似度矩阵。 自动编码器(Autoencoder, AE)是无监督学习的一种,由编码器(Encoder)和解码器(Decoder)两部分组成。编码器将输入数据压缩为低维的隐藏表示,而解码器则尝试从这个隐藏表示重构原始输入。深度自动编码器具有多层隐藏层,可以捕获更复杂的非线性结构。 稀疏自动编码器(Sparse Autoencoder, SAE)引入了稀疏性约束,使得网络在学习过程中倾向于生成稀疏的隐藏层激活。这有助于学习到更有意义的特征,因为实际世界的数据往往具有稀疏的潜在结构。在MATLAB实现中,我们可能会使用L1范数惩罚项来鼓励隐藏单元的激活接近于零,从而实现稀疏编码。 在本案例中,输入数据是节点相似度矩阵,矩阵的维度与网络中的节点数量相同。通过深度稀疏自动编码器,我们可以对这个高维矩阵进行降维,提取出能够代表节点间关系的关键特征。 实现步骤包括:1. 数据预处理:将节点相似度矩阵转换为适合网络训练的格式。2. 构建网络结构:定义深度自动编码器的层数、每层的神经元数量以及稀疏度参数。3. 训练过程:使用反向传播算法更新网络权重,同时应用稀疏性约束。4. 特征提取:编码器的输出即为低维特征矩阵,可用于后续的分析或分类任务。5. 评估与调整:监控训练过程中的损失函数变化,根据需求调整网络结构和参数。 MATLAB代码中可能包含以下关键部分:- 初始化网络结构,包括权重和偏置。- 定义损失函数,如均方误差(MSE)加上L1正则化项。- 实现前向传播,计算隐藏层和输出层的激活。- 实现反向传播,计算权重更新。- 在每次迭代后更新稀疏性惩罚项。- 循环进行训练,直到满足停止条件。 通过这样的过程,我们可以利用深度稀疏自动编码器对节点相似度矩阵进行有效的降维,提取出能反映节点间关系的核心特征,这些特征不仅降低了数据复杂性,还有助于我们理解和解释高维数据的内在结构。
Statistical Modeling with R Software
统计建模与R软件 一、知识点概览 本教材《统计建模与R软件》主要介绍了统计学的基本理论及其在R语言中的应用。通过本书的学习,读者将能够掌握如何利用R软件进行数据处理、统计分析及模型构建等技能。 二、核心知识点详解 1.1 统计基础知识 1.1.1 随机试验随机试验是指结果不能预先确定的试验。例如,掷一枚硬币的结果可能是正面或反面,这无法事先确切预测。随机试验具有以下特点:- 可重复性:可以多次重复相同的试验。- 不确定性:每次试验的结果是不确定的。- 可观察性:试验的结果是可以观察到的。 1.1.2 样本空间与样本点- 样本空间(Ω):随机试验所有可能结果的集合称为样本空间。- 样本点(ω):样本空间中的每一个基本结果称为一个样本点。 1.1.3 随机事件随机事件是指由一个或多个样本点组成的子集。例如,在掷骰子的试验中,“出现偶数”就是一个随机事件。 1.1.4 集合的运算- 包含关系:如果所有的元素A都在B中,则称A包含于B,记作A⊆B。- 相等:如果两个集合A和B中的元素完全相同,则称A等于B,记作A=B。- 并集:两个集合A和B的所有元素构成的新集合,记作A∪B。- 交集:两个集合A和B共有的元素构成的新集合,记作A∩B。- 差集:集合A去掉B中的元素后剩下的元素集合,记作A-B。 1.1.5 概率的定义概率是对随机事件发生可能性大小的一种度量。对于任意随机事件A,其概率P(A)满足0≤P(A)≤1。若P(A)=0,则称事件A是不可能事件;若P(A)=1,则称事件A是必然事件。 1.1.6 Bayes公式Bayes公式是在已知某个条件发生的前提下计算另一个事件的概率的方法,特别适用于条件概率的计算。公式表达为:[P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}]其中,P(A|B)表示在事件B已经发生的条件下事件A发生的概率。 1.1.7 统计分布- 离散型随机变量的分布:例如伯努利分布、二项分布等。- 连续型随机变量的分布:例如正态分布、均匀分布等。 1.1.8 伯努利分布伯努利分布是一种只有两种可能结果(成功或失败)的离散型随机变量的分布。