最新实例
MATLAB开发使用维吾尔球形转换进行自由空间操作功能
在MATLAB开发中,利用维吾尔球形转换进行自由空间操作,通过给定输入平面上的某个场信息,可以预测输出平面上的任何一个视场。该方法为实现平面到球面之间的映射提供了有效工具,广泛应用于光学成像、图像处理等领域。
Matlab
0
2024-11-06
MATLAB真值表向量生成器基于位数生成任意长度真值表
通过正确选择[n & bit],您将能够构建任何长度的真值表,即n=2^bit-1。使用MATLAB,您可以通过简单的代码来生成真值表向量,进而应用于错误检测、错误纠正等多种领域。MATLAB中的函数可以轻松地处理位数并自动生成相应的真值表,帮助您高效实现复杂的逻辑分析和验证任务。
Matlab
0
2024-11-06
Matlab数组输出详解与示例
在 Matlab 中,输出 数组 的方法有多种,下面是几种常见的方式:
使用 disp() 函数输出数组:
A = [1, 2, 3, 4, 5];
disp(A);
使用 fprintf() 函数格式化输出数组:
A = [1, 2, 3, 4, 5];
fprintf('Array: %d %d %d %d %d
', A);
直接在命令行输入数组,Matlab 会自动显示:
A = [1, 2, 3, 4, 5];
A
使用 sprintf() 将数组输出为字符串:
A = [1, 2, 3, 4, 5];
str = sprintf('%d ', A);
disp(str);
Matlab 提供了多种方法来 输出数组,通过这些方式可以灵活地进行显示和格式化。
Matlab
0
2024-11-06
MATLAB_Six_DOF_Robotic_Arm_Dynamics_Modeling
将介绍如何使用MATLAB实现由拉格朗日法建模的六自由度机械臂。通过此方法,可以推导出机械臂的动力学方程,进一步实现机械臂的运动仿真和控制。具体步骤包括:
拉格朗日方程的推导:基于机械臂的动能和势能,通过拉格朗日方程求得运动方程。
坐标变换与质心计算:通过坐标变换实现机械臂各个关节和连杆的描述。
运动方程求解:结合牛顿-欧拉法或拉格朗日法求解动力学方程,得到机械臂的关节力矩和加速度。
MATLAB仿真:将动力学模型转换为可执行代码,通过MATLAB进行仿真与可视化展示。
通过此方法,能够有效模拟和优化六自由度机械臂的运动与控制。
Matlab
0
2024-11-06
JCSA-RM_RGBD_Image_Segmentation_MATLAB_Code RGB-D Image Segmentation Using JCSA-RM Method
该存储库提供了JCSA-RM方法用于RGB-D图像分割和分析的MATLAB实现。JCSA-RM方法结合了RGB和深度信息,通过联合色彩空间轴向聚类和区域合并来实现图像分割。此存储库包含以下功能演示:
从mat文件中加载RGB-D图像数据(包括RGB图像、深度图像和法线数据),并显示它们。
生成并显示分割结果图像。
如何使用演示:- 运行MATLAB文件RGBD_Seg_JCSA_RM.m以使用GUI版本,或者运行demo_NO_GUI.m进行非GUI版本的演示。- 数据加载:使用样件名如rgbd_info_1.mat,rgbd_info_2.mat,rgbd_info_1_better_normals.mat,或rgbd_info_2_better_normals.mat。- 选择_better_normals版本,尝试使用无歧义的表面法线进行更精确的分割。- 在测试选项中选择不同的测试方法:a) JCSAb) JCSD
此代码库经MATLAB 2017b版本测试,适用于RGB-D图像分析的实验和研究。
Matlab
0
2024-11-06
INS_Kalman_Filter_Alignment_and_Inertial_Navigation_Calculation
惯导解算程序,实现了粗对准,卡尔曼滤波精对准,以及惯导解算,基于matlab程序,有六轴数据文件。
Matlab
0
2024-11-06
Antenna Selection Code MATLAB-One or Multiple Streams Emil Björnson,Marios Kountouris,Mats Bengtsson
The Antenna Selection Code MATLAB is related to a downlink system with multiple antenna users, combining received signals and enabling multi-stream multiplexing. This package is linked to the scientific paper: Emil Björnson, Marios Kountouris, Mats Bengtsson, Björn Ottersten, titled, \"IEEE Transactions on Signal Processing, Vol. 61, No. 13, July 2013, Pages 3431-3446.\" The package provides a MATLAB-based simulation environment that can replicate all numerical results and figures from the paper. We encourage reproducible research! In a downlink multi-antenna system with many users, the multiplexing gain is severely limited by the number of transmitting antennas (N) and how they are used. When the total number of receiving antennas at the multi-antenna users is much larger than (N), it is possible to achieve maximal multiplexing gain with various transmitting/receiving strategies. For instance, excess receiving antennas can be used to schedule users with near-orthogonal effective channels, to multiplex multiple streams to users with well-conditioned channels, and/or to implement interference-aware receive combining. This paper aims to answer the following question: Should the (N) data streams be allocated to a few users (each with many streams) or to multiple users (each with few streams, thereby enabling receive combining)? The analysis in the paper concludes that...
Matlab
0
2024-11-06
Library Management System MySQL Backend-Based Tool Developed in MATLAB
Start the project with LOGIN.m. The system is based on MySQL as the backend, allowing users to add, delete, and search for members. Member details, including photo uploads, are supported. For book issues/returns, if the return date exceeds 15 days, a fine is applied. Users can also add or delete books, with options for searching books under various conditions. The library allows a maximum of 3 books per user at any given time. The software is password-protected, with the default password set as 'tilak' (without quotes). Before running, ensure to copy all commands from mysql.txt in the zip file into your MySQL terminal. Also, ensure that port 3306 is open.
Matlab
0
2024-11-06
GA-Based Hydrological Applications Detailed Implementation Process
The genetic algorithm (GA) has proven to be a valuable optimization tool in hydrological modeling. It can be applied to optimize model parameters, solve inverse problems, and improve the accuracy of hydrological predictions. The detailed implementation process involves several key steps, including population initialization, fitness evaluation, selection, crossover, and mutation processes. Once the model parameters are optimized through the algorithm, the results can be validated using observed data to ensure their effectiveness in water resource management and prediction. Hydrological systems are often nonlinear and complex, making GA a suitable choice due to its ability to search for global optima efficiently.
The implementation typically begins by defining the objective function, which might be related to minimizing prediction errors in rainfall-runoff models or optimizing reservoir operation strategies. After initialization, GA works iteratively, selecting individuals based on their fitness to undergo genetic operations. After several generations, the algorithm converges to an optimal or near-optimal solution.
This approach has been used successfully in areas such as flood forecasting, rainfall-runoff prediction, and water quality modeling, demonstrating its robustness and adaptability to varying hydrological conditions.
Matlab
0
2024-11-06
MatLab-Thickness-Graph-SourceCode.zip
[MatLab] - 厚度 - 图 + 图源码.zip
Matlab
0
2024-11-06