双四元数

当前话题为您枚举了最新的 双四元数。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Matlab四元数仿真库开发
这是一个用于处理四元数的Matlab仿真库。
matlab开发四元数乘法计算
介绍了在matlab开发环境中进行四元数乘法计算的方法。
刚性运动与机器人工具箱3D刚性变换和机器人的四元数与双四元数接口-Matlab开发
这个工具箱提供了一系列用于建模3D刚性运动的函数,包括欧拉角、旋转和齐次矩阵、四元数以及双四元数的表示。在使用工具箱之前,您需要运行以下脚本: >> setup_robot_toolbox 这将暂时修正您的路径以包含所有必要的文件夹(否则,您可以将上述行添加到Matlab的配置文件“startup.m”中)。该工具箱的功能模块包括四元数、双四元数代数,以面向对象的方式为每个编程提供了Matlab接口,允许与实数、复数或矩阵相同的方式使用它们。例如,一个包含N个3D列向量的3xN矩阵xyz可以通过以下四元数表示转换: >> myquaternions = [ii, jj, kk] * xyz;这将生成一个1xN的四元数数组。您还可以计算这些四元数表示的旋转角度: >> angle(quaternion),或者计算它们的平方或比较它们: >> myquat。
阴离子类复数、四元数、八元数的递归构建与Matlab开发
阴离子类包括复数、四元数、八元数等,它们通过递归构建,在Matlab开发中具有重要意义。这些类可以根据Caley-Dickson的构造相互组合,每个类具有'order'、'left'和'right'属性,分别表示阴离子的顺序、左侧和右侧部分。不同阶数的阴离子类在数学运算中表现出多样性,例如三角函数和双曲函数的集成。
机器人学 DQ 工具箱双四元数操作功能详解 - Matlab开发
目前正在开发中的Robotics DQ工具箱将提供对双四元数的操作功能,这将在Matlab环境下得以实现。
双四元数工具箱点和线的3D运动学方法详解
该工具箱专注于双四元数方法,特别侧重于点和线的3D运动学问题。它支持编码点位置、速度、线位置、速度,以及旋转、平移和螺旋运动。您可以利用其进行对偶四元数的计算,如乘法、共轭和逆运算。此外,它还允许在Fick旋转坐标、3*3旋转矩阵、旋转双四元数和角向量之间轻松转换。工具箱的功能还包括寻找两个酉向量之间的最短旋转以及解决两条线之间最短螺旋运动的问题。您可以在示例文件example_forward_kinematics.m中找到详细的应用示例。
MATLAB实现矩阵乘法与四元数类(Quaternion)重点支持Modified Rodrigues参数化(MRP)
该Quaternion类(Quaternion.h)在MATLAB中实现了多种常用功能,主要包括:四元数乘积、从单位四元数转换为旋转矩阵、基本插值(SLERP)和微分运算。此类不仅支持加法、四元数乘法、标量乘法等常规操作,还特别注重Modified Rodrigues参数化(MRP),即通过MRP更新实现了旋转和四元数导数的解析计算。此外,Quaternion类通过完全模板化的精度控制,可以自动处理不同精度的四元数对象或变量进行运算。该类具备强大的功能,支持直接操作四元数,无需借助外部库,能够实现从轴角、MRP、吉布斯向量等不同参数形式的初始化,并提供必要的转换和计算操作,保证了高效与精度的平衡。
四元数到欧拉角的转换 - MATLAB 实现
本教程介绍了如何使用 MATLAB 将四元数变换为欧拉角。
3D四元数朱利亚集Sid Collins为MAE 495非线性动力学研究项目开发的MATLAB程序
这个程序是为了生成和研究二维和三维四元数填充朱利亚集而设计的。
双车道多速元胞自动机模型的周期边界公交影响
元胞自动机(CA),又称细胞自动机或点格自动机,是一种时间和空间都离散的动力系统。每个元胞在规则的格网中取有限的离散状态,并依据局部规则进行同步更新。这些元胞通过简单的相互作用演化成动态系统。不同于一般的动力学模型,CA不依赖严格定义的物理方程或函数,而是通过一系列构造的规则来定义。因此,它是一类模型的总称,具有时间、空间和状态都离散的特点。