使用带行置换的QR分解计算稀疏矩阵的NULL空间和ORTHOGONAL基的两个简单函数。对于FULL矩阵,Matlab库存函数NULL和ORTH使用SVD分解,这不适用于SPARSE矩阵。从Matlab 2009B开始,QR分解可用于稀疏矩阵,能够有效估计正交基,而无需将矩阵转换为FULL形式。
Sparse Matrix Null Space and Orthogonal Basis Calculation Using QR Decomposition
相关推荐
Proper orthogonal decomposition and its applications.pdf
POD(Proper Orthogonal Decomposition,正交分解)是一种在工程领域广泛应用的有效且精妙的数据分析方法。在高维过程中,POD能够提供数据的低维近似描述,特别适用于实验或数值模拟数据集的模态分解需求。该方法关键在于获取一组正交基函数,以捕捉数据的主要动态特性,这些基函数通常称为经验模态。正交分解在数据压缩、噪声去除、系统识别和流体动力学等领域有广泛应用。文中详述了POD方法的三种主要形式:Karhunen-Loève分解(KLD)、主成分分析(PCA)和奇异值分解(SVD),这些方法在处理POD问题时理论上等效。KLD通过最优线性正交展开提取连续时间随机过程的特征函数集,而PCA则转换可能相关联的变量为主成分,以减少数据维度并保留信息。SVD则是一种在信号和图像处理中广泛应用的线性代数分解方法。文中强调了这些方法在处理离散随机向量的POD问题时的数学一致性,不论从理论还是实际应用角度均具有重要意义。作者还突出了POD方法在工程应用中的重要性和趋于普及,特别强调了方法间的联系描述对工程实践的重要性。
算法与数据结构
0
2024-08-27
Matrix Decomposition Recommendation Algorithm MATLAB Implementation
矩阵分解的推荐算法MATLAB实现,直接运行main.m
Matlab
0
2024-11-04
Image Fusion Using Morphological Analysis and Sparse Representation in Matlab
本视频介绍了基于Matlab的形态学分析和稀疏表征的CSMCA图像融合方法,代码均可运行,适合初学者。1. 主函数:main.m;调用函数:其他m文件;运行结果无需额外操作。2. 运行版本:Matlab 2019b。如有错误,根据提示调整,若有疑问可私信博主。3. 运行步骤:- 步骤一:将所有文件放入Matlab当前文件夹;- 步骤二:双击打开main.m;- 步骤三:点击运行,等待结果。4. 服务咨询:可私信博主或扫描视频QQ名片获取更多支持,包括完整代码、期刊复现、程序定制及科研合作等。
Matlab
0
2024-11-04
Edge-Detection-Using-OpenCV-and-MatLab-in-Lab-Color-Space
边缘检测在图像处理中起着至关重要的作用。在本教程中,我们将展示如何使用OpenCV和MatLab在Lab色彩空间中实现边缘检测。具体步骤如下:
首先,将输入的RGB图像转换为Lab色彩空间。
在转换后的图像中,应用边缘检测算法,例如Canny边缘检测。
观察处理后的图像,分析边缘检测的效果。
通过此方法,Lab色彩空间的优势在于它更好地分离了色度和亮度信息,有助于提高边缘检测的准确性。
代码示例(OpenCV):
import cv2
import numpy as np
# 读取图像
img = cv2.imread('image.jpg')
# 转换为Lab色彩空间
lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)
# 提取亮度通道
l, a, b = cv2.split(lab)
# 应用Canny边缘检测
edges = cv2.Canny(l, 100, 200)
# 显示结果
cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
此代码展示了如何使用OpenCV处理Lab色彩空间中的边缘检测。
MatLab代码示例:
img = imread('image.jpg');
% 转换为Lab色彩空间
lab = rgb2lab(img);
% 提取亮度通道
l = lab(:,:,1);
% 应用Canny边缘检测
edges = edge(l, 'Canny');
% 显示结果
imshow(edges);
通过这些步骤,您可以在Lab色彩空间中准确地进行边缘检测,提升图像处理的质量。
Matlab
0
2024-11-06
shadow-detection-using-LAB-color-space-python-implementation
该存储库包含阴影检测算法的Python实现,使用LAB颜色空间进行阴影检测。实现参考了论文:Ashraful Huq Suny和Nasrin Hakim Mithila的研究《使用LAB色彩空间从单个图像中进行阴影检测和去除》,IJCSI 2013(链接)。
在该实现中,我们使用LAB颜色空间来检测航空影像中的阴影区域,并将其作为阴影地面真相图进行进一步分析。通过对LAB颜色空间的运用,能够有效地从图像中识别并去除阴影,提高图像处理的精度和质量。
Matlab
0
2024-11-05
Using Euler's Formula for Pi Calculation and Implementing Real-Time Facial Landmark Detection in PFLD
欧拉公式求圆周率的Matlab代码
在Matlab中,可以使用欧拉公式计算圆周率,通过迭代逼近得到精确的结果。这种方法可以帮助研究人员和开发人员了解并计算常数π的值。以下是一个简单的Matlab代码示例:
% Matlab代码示例
pi_approx = 0;
for k = 0:n
pi_approx = pi_approx + ((-1)^k)/(2*k + 1);
end
pi_approx = pi_approx * 4;
PFLD面部地标检测器的非正式实现
PFLD是一种实用的面部地标检测器,适用于实时面部地标检测和头部姿势估计。使用Pytorch的非官方实现可以简化其安装过程,同时适应不同版本。下面是安装步骤:
$ pip3 install -r requirements.txt # 替换成您PyTorch的版本
安装OpenCV和DNN(可选)
OpenCV的DNN模块和Haar级联适用于面部检测,如果仅需要使用Haar级联则可以跳过以下部分。
sudo apt update && sudo apt install -y cmake g++ wget unzip
wget -O opencv.zip https://github.com/opencv/archive/master.zip
wget -O opencv_contrib.zip https://github.com/opencv_contrib/archive/master.zip
unzip opencv.zip
这样就可以顺利安装用于PFLD的OpenCV模块,并开始进行实时地标检测。
Matlab
0
2024-11-05
String Decomposition by Multiple Identifiers
对字符串中,存在各种特殊符号的,可同时按多种符号(或特殊符号),分解字符串,按字符位置顺序返回。
SQLServer
0
2024-11-03
Matlab Matrix Operations-Basics of Vector and Matrix Calculations in Matlab
Matlab基础向量与矩阵运算
在Matlab中,矩阵运算是核心功能之一,主要包括以下几种操作:
矩阵加法:对于两个矩阵A和B,它们的维度必须相同才能进行加法运算。运算符是+,例如:C = A + B;
矩阵乘法:矩阵的乘法规则是:A的列数必须等于B的行数,运算符是*,例如:C = A * B;
矩阵转置:使用单引号(')来转置矩阵,例如:C = A';
矩阵求逆:对于方阵A,可以使用inv函数来求逆,例如:B = inv(A);
点积与叉积:Matlab支持向量的点积和叉积,例如:dot_product = dot(A, B);cross_product = cross(A, B);
通过这些基本的矩阵操作,可以完成大量的数学计算,广泛应用于数据分析、工程计算等领域。
Matlab
0
2024-11-06
Matlab Singular Value Decomposition Solutions
很不错的Matlab代码,可以很好的解决奇异值分解问题。
Matlab
0
2024-11-04