SUTM内点法,即障碍函数法,在MATLAB中的应用是本课程的重点内容。本讲授非线性规划问题的解决方法。
SUTM内点法障碍函数法-MATLAB入门指南-第6讲非线性规划
相关推荐
Matlab实现非线性规划优化-NonlinearPrograming.zip
Matlab非线性规划实现## 使用Matlab函数 fmincon() 和 optimproblem() 进行优化。
Matlab
0
2024-08-05
第01章线性规划的简介
线性规划是一种优化问题的数学方法,广泛应用于工程、经济学和管理科学领域。它通过确定最佳决策变量值来实现特定的目标函数,以最大化或最小化目标。这种方法通常涉及一组线性约束条件,用于限制决策变量的取值范围。线性规划方法被广泛用于制造业的生产计划、供应链管理和资源优化。如需详细了解线性规划,请参阅附件中的PDF文档。
Matlab
2
2024-07-22
无约束非线性规划搜索过程
无约束非线性规划问题最优解为(1 1),初始点为(-1 1)迭代结果如下:| 迭代次数 | X | Y | F || ----- | ----- | ----- | ----- || 0 | -1 1 | 4.00 || 1 | -0.79 0.58 | 3.39 || 2 | -0.53 0.23 | 2.60 || 3 | -0.18 0.00 | 1.50 || 4 | 0.09 -0.03 | 0.98 || 5 | 0.37 0.11 | 0.47 || 6 | 0.59 0.33 | 0.20 || 7 | 0.80 0.63 | 0.05 || 8 | 0.90 0.003 | 0.99 || 9 | 0.99 1E-4 | 0.999 || 10 | 0.998 1E-5 | 0.9997 || 11 | 0.9998 1E-8 | 0.9999 |
Matlab
2
2024-06-01
基于Matlab求解非线性规划问题的主程序
主程序youh3.m的设置如下:x0=[-1;1]; A=[]; b=[]; Aeq=[1 1]; beq=[0]; vlb=[]; vub=[]; [x,fval]=fmincon('fun4',x0,A,b,Aeq,beq,vlb,vub,'mycon')。运算结果显示:x = -1.2250,fval = 1.8951。
Matlab
1
2024-07-21
Matlab优化方法下的非线性规划基础概念
在Matlab优化方法的指导下,探讨非线性规划的基础概念。
Matlab
0
2024-09-24
线性规划的MATLAB优化方法
无约束规划
非线性规划
Matlab
3
2024-05-25
使用Matlab解决线性规划问题
四、在模型1中,由于a是任意给定的风险度,不同的投资者有不同的风险偏好。我们从a=0开始,以步长△a=0.001进行循环搜索,编写的程序如下:
Matlab
0
2024-09-01
Python实现线性规划模型
以下是使用Python实现线性规划模型的代码示例。线性规划是一种优化问题的数学方法,通过定义目标函数和约束条件来求解最优解。Python提供了多种库和工具来进行线性规划模型的实现和求解。
算法与数据结构
0
2024-09-18
基于 CasADi 与 Ipopt 的大规模非线性规划求解器
该项目结合 CasADi 的自动微分、求解器耦合以及代码生成等特性,为大规模非线性规划 (NLP) 提供了简洁易用的求解方案。该方案已成功应用于多个硕士论文研究中,有效促进了非线性最优控制问题的探索。
Matlab
2
2024-05-29