主程序youh3.m的设置如下:x0=[-1;1]; A=[]; b=[]; Aeq=[1 1]; beq=[0]; vlb=[]; vub=[]; [x,fval]=fmincon('fun4',x0,A,b,Aeq,beq,vlb,vub,'mycon')。运算结果显示:x = -1.2250,fval = 1.8951。
基于Matlab求解非线性规划问题的主程序
相关推荐
基于 CasADi 与 Ipopt 的大规模非线性规划求解器
该项目结合 CasADi 的自动微分、求解器耦合以及代码生成等特性,为大规模非线性规划 (NLP) 提供了简洁易用的求解方案。该方案已成功应用于多个硕士论文研究中,有效促进了非线性最优控制问题的探索。
Matlab
9
2024-05-29
使用Matlab解决线性规划问题
四、在模型1中,由于a是任意给定的风险度,不同的投资者有不同的风险偏好。我们从a=0开始,以步长△a=0.001进行循环搜索,编写的程序如下:
Matlab
8
2024-09-01
Matlab实现非线性规划优化-NonlinearPrograming.zip
Matlab非线性规划实现## 使用Matlab函数 fmincon() 和 optimproblem() 进行优化。
Matlab
9
2024-08-05
Matlab优化方法下的非线性规划基础概念
在Matlab优化方法的指导下,探讨非线性规划的基础概念。
Matlab
6
2024-09-24
无约束非线性规划搜索过程
无约束非线性规划问题最优解为(1 1),初始点为(-1 1)迭代结果如下:| 迭代次数 | X | Y | F || ----- | ----- | ----- | ----- || 0 | -1 1 | 4.00 || 1 | -0.79 0.58 | 3.39 || 2 | -0.53 0.23 | 2.60 || 3 | -0.18 0.00 | 1.50 || 4 | 0.09 -0.03 | 0.98 || 5 | 0.37 0.11 | 0.47 || 6 | 0.59 0.33 | 0.20 || 7 | 0.80 0.63 | 0.05 || 8 | 0.90 0.003 |
Matlab
8
2024-06-01
基于MATLAB的线性规划:算法与应用
基于MATLAB的线性规划:算法与应用
本书深入探讨了多种线性规划算法和方法,并辅以计算演示,其中着重介绍了改进的单纯形法及其组成部分。对于每种算法,本书都提供了理论背景、数学公式、完整的数值示例以及相应的MATLAB代码实现。这些实现经过精心设计,即使面对大规模的基准线性规划问题,用户也能找到解决方案。
书中对每种算法都进行了基于基准问题的计算研究,分析了算法的计算行为。作为对现有特定算法文献的补充,这本书对于具备线性代数和微积分基础的研究人员、科学家、数学程序员和学生都非常有价值。
读者能够通过清晰的讲解理解和应用单纯形法的所有组成部分,包括预求解技术、缩放技术、数据透视规则、基更新方法以
Matlab
9
2024-05-26
非线性摆求解器的开发基于Matlab的非线性摆求解方法
介绍了基于Matlab开发的非线性摆求解器,使用有限差分格式进行求解。
Matlab
7
2024-08-30
使用蒙特卡洛方法解决非线性规划问题
使用蒙特卡洛方法可以有效解决非线性规划问题,这种方法在处理复杂的优化需求时非常有效。
Matlab
13
2024-07-17
双市场线性规划模型构建与求解
考虑到不同市场价格差异,构建线性规划模型以最大化虚拟经销商利润。假设甲方以不同价格售出的产品数量分别为 A1,A2,A3,A4,乙方以不同价格购买的数量分别为 X1,X2,X3,X4;丙方以不同价格售出的产品数量分别为 B1,B2,B3,B4,丁方以不同价格购买的数量分别为 Y1,Y2,Y3,Y4。假设 AX 和 AY 分别代表甲方对乙方和丁方的供货量,BX 和 BY 分别代表丙方对乙方和丁方的供货量。
目标函数为最大化虚拟经销商总利润。约束条件包括供需平衡、供应限制、需求限制以及非负限制。其中,供需平衡约束需体现决策变量之间的关系:
A1 + A2 + A3 + A4 = AX + AY
算法与数据结构
12
2024-05-27