最优化技术在支持向量机研究中的应用收集了多篇关于最小二乘支持向量机的相关论文,并进行了打包分享。
最优化技术在支持向量机研究中的应用
相关推荐
支持向量机在金融时间序列预测中的应用
支持向量机, 一种基于统计学的新型机器学习和数据挖掘技术, 遵循结构风险最小化原则。金融时间序列数据通常具有非平稳性、复杂性、非线性以及噪声干扰, 传统预测方法难以取得令人满意的效果。本研究提出一种基于支持向量机的金融时间序列预测方法, 并将其应用于上证180指数预测。实验结果表明, 支持向量机方法能够有效地建模动态金融时间序列, 并取得良好的预测效果。
数据挖掘
6
2024-05-12
支持向量机(SVM)应用详解
详细介绍了使用Matlab编写的支持向量机分类器代码,用于模式识别和分类任务。支持向量机作为一种强大的机器学习算法,在各种应用场景中展示出了其高效性和准确性。通过该代码,用户可以深入了解支持向量机在模式识别中的实际应用。
Matlab
2
2024-07-23
支持向量机在数据挖掘中的应用资料
这里提供了一些关于支持向量机在数据挖掘中的基础阅读资料。
数据挖掘
1
2024-07-15
支持向量机在数据挖掘中的创新应用
这本书是一本适合工科研究人员的入门书,介绍了支持向量机和核方法的基础知识。作者是中国农业大学的邓乃杨和田英杰。
数据挖掘
3
2024-07-18
matlab中的多分类支持向量机程序
使用Matlab内置的svmtrain和svmpredict函数实现多分类支持向量机。
Matlab
0
2024-08-29
利用支持向量机(SVM)进行预测的应用
现有测试数据可直接用于实施。
Matlab
0
2024-08-26
支持向量机中粒子群优化参数调节的Matlab实现
支持向量机(SVM)中,利用粒子群优化方法调节参数C和G的Matlab代码。经过调试验证,非常有效且操作便捷。
Matlab
0
2024-08-22
支持向量机源代码
支持向量机(SVM)二分类模型利用间隔最大的线性分类器定义于特征空间上,并以核技巧转化为非线性分类器。SVM学习策略的目标为间隔最大化,可转换为求解凸二次规划或最小化正则化合页损失函数。其学习算法则是求解凸二次规划的最优化算法。
算法与数据结构
4
2024-05-01
支持向量机在数据挖掘中的创新方法邓_支持向量机.part4
邓_支持向量机.part4是关于支持向量机器的最佳著作,探讨了数据挖掘中的新方法。
数据挖掘
1
2024-07-15