这本书是一本适合工科研究人员的入门书,介绍了支持向量机和核方法的基础知识。作者是中国农业大学的邓乃杨和田英杰。
支持向量机在数据挖掘中的创新应用
相关推荐
支持向量机在数据挖掘中的应用资料
这里提供了一些关于支持向量机在数据挖掘中的基础阅读资料。
数据挖掘
1
2024-07-15
支持向量机在数据挖掘中的创新方法邓_支持向量机.part4
邓_支持向量机.part4是关于支持向量机器的最佳著作,探讨了数据挖掘中的新方法。
数据挖掘
1
2024-07-15
数据挖掘中的创新方法支持向量机探索
国内一位教师撰写的数据挖掘教材,着眼于优化方法,深入探讨了支持向量机的应用。
数据挖掘
3
2024-07-13
数据挖掘中的创新方法支持向量机探索
支持向量机作为数据挖掘领域中的新兴方法,正逐步成为研究重点。它以其在处理复杂数据集方面的卓越表现,吸引了广泛的关注和应用。
数据挖掘
2
2024-07-17
Excel在数据挖掘中的创新应用
Excel是目前应用广泛且易于上手的电子表格软件,其强大的数据统计分析和图表制作功能使其成为数据挖掘的首选工具。Microsoft Office Excel 2013作为里程碑式产品,特别针对大数据和互联网时代的需求进行了优化,引入了Power Query、Power View、Power Map和PowerPivot等新功能,极大地增强了其在数据挖掘领域的应用价值。
算法与数据结构
3
2024-07-15
数据挖掘中的新方法-支持向量机
中国农业大学邓乃扬教授编著的专著,全面讲解支持向量机的原理、方法和应用。
数据挖掘
3
2024-05-01
探究数据挖掘利器:支持向量机
源于统计学习理论,由 Vapnik 提出的支持向量机算法,为解决分类和回归问题提供了全新的思路。该算法的提出、论证及应用,为数据挖掘领域注入了新的活力。
数据挖掘
5
2024-05-28
深度学习技术在数据挖掘中的创新应用
数据挖掘原理与应用方面的深度学习技术正逐步成为关键技术,其在各个领域的应用潜力不容忽视。
SQLServer
0
2024-08-04
数据挖掘的新方法:支持向量机
以支持向量机(SVM)为代表的机器学习算法在数据挖掘中发挥着重要作用。SVM是一种监督学习算法,用于分类和回归任务。在数据挖掘中,SVM因其处理高维数据和非线性数据的能力而受到青睐。
在支持向量机中,将数据点映射到更高维的特征空间,并使用超平面将数据点分隔开来。超平面是特征空间中将不同类别的点分开的决策边界。SVM的目标是找到最佳超平面,使超平面与支持向量(距离超平面最近的数据点)之间的间隔最大化。
SVM在数据挖掘中广泛应用于图像分类、文本分类、自然语言处理、生物信息学等领域。通过优化超平面和支持向量,SVM能够有效解决复杂的数据挖掘问题。
数据挖掘
5
2024-04-30