支持向量机(SVM)中,利用粒子群优化方法调节参数C和G的Matlab代码。经过调试验证,非常有效且操作便捷。
支持向量机中粒子群优化参数调节的Matlab实现
相关推荐
优化特征变换改进粒子群与支持向量机混合的方法探究
探讨了一种改进粒子群优化(PSO)与支持向量机(SVM)混合的特征变换方法,通过线性变换因子加速PSO搜索,结合二进制PSO进行特征选择,从而优化SVM分类器的精度。实验结果显示,该方法在多个数据集上均比传统C-SVM分类更为精确。
数据挖掘
5
2024-08-22
MATLAB支持向量机PSO-SVM粒子算法优化代码
这篇文章介绍了如何使用粒子群算法优化MATLAB中的支持向量机程序,以提高对股票价格和经济走势的预测精度。
Matlab
10
2024-07-28
优秀的支持向量机MATLAB实现
支持向量机MATLAB代码涵盖了分类和回归功能,非常有效。
Matlab
10
2024-10-01
Matlab中支持向量机程序的实现
在Matlab中,有一个支持向量机(SVM)程序,其中包括了两种不同的内核:一种是用C语言编写的OSU-SVM内核,具有更高的执行效率;另一种是Matlab内置的内核。详细使用说明可以在http://see.xidian.edu.cn/faculty/chzheng/bishe/index.htm找到。
Matlab
7
2024-07-31
MATLAB 粒子群优化算法实现
该资源包含使用 MATLAB 实现粒子群优化算法的所有 .m 函数文件代码。
Matlab
11
2024-05-30
matlab编程-粒子群计时向量编码
matlab编程-粒子群计时向量编码。粒子群优化算法(PSO)的基本实现。
Matlab
6
2024-09-25
基于Matlab的支持向量机实现代码
Matlab支持向量机工具箱1.0的使用平台为Matlab6.5。该工具箱包含二种分类、二种回归以及一种一类支持向量机算法:(1) Main_SVC_C.m —— C_SVC二类分类算法;(2) Main_SVC_Nu.m —— Nu_SVC二类分类算法;(3) Main_SVM_One_Class.m —— One-Class支持向量机;(4) Main_SVR_Epsilon.m —— Epsilon_SVR回归算法;(5) Main_SVR_Nu.m —— Nu_SVR回归算法。
Matlab
8
2024-07-14
基于Matlab的粒子群优化算法实现
这是一个关于粒子群优化算法的基础Matlab源代码,附带详细注释,方便学生学习和理解。希望这能对你们有所帮助!
Matlab
8
2024-09-27
经典支持向量机(SVM)算法MATLAB实现
经典支持向量机(SVM)算法MATLAB程序,用于利用MATLAB进行数据SVM仿真实验。
Matlab
9
2024-08-18