支持向量机, 一种基于统计学的新型机器学习和数据挖掘技术, 遵循结构风险最小化原则。金融时间序列数据通常具有非平稳性、复杂性、非线性以及噪声干扰, 传统预测方法难以取得令人满意的效果。本研究提出一种基于支持向量机的金融时间序列预测方法, 并将其应用于上证180指数预测。实验结果表明, 支持向量机方法能够有效地建模动态金融时间序列, 并取得良好的预测效果。
支持向量机在金融时间序列预测中的应用
相关推荐
利用支持向量机(SVM)进行预测的应用
现有测试数据可直接用于实施。
Matlab
0
2024-08-26
最优化技术在支持向量机研究中的应用
最优化技术在支持向量机研究中的应用收集了多篇关于最小二乘支持向量机的相关论文,并进行了打包分享。
Matlab
0
2024-08-26
MATLAB在时间序列建模预测中的应用及程序示例
时间序列是按时间顺序排列、随时间变化且相互关联的数据序列。时间序列分析是数据分析中一个重要的领域。以下是MATLAB在时间序列建模预测中的具体应用示例。
Matlab
2
2024-07-30
支持向量机(SVM)应用详解
详细介绍了使用Matlab编写的支持向量机分类器代码,用于模式识别和分类任务。支持向量机作为一种强大的机器学习算法,在各种应用场景中展示出了其高效性和准确性。通过该代码,用户可以深入了解支持向量机在模式识别中的实际应用。
Matlab
2
2024-07-23
支持向量机在数据挖掘中的应用资料
这里提供了一些关于支持向量机在数据挖掘中的基础阅读资料。
数据挖掘
1
2024-07-15
支持向量机在数据挖掘中的创新应用
这本书是一本适合工科研究人员的入门书,介绍了支持向量机和核方法的基础知识。作者是中国农业大学的邓乃杨和田英杰。
数据挖掘
3
2024-07-18
用于时间序列预测的SAS应用
SAS应用于时间序列预测,提供完整的书签,并裁剪适合月度版本。
算法与数据结构
0
2024-08-08
模糊时间序列模型在重庆短期气候预测中的创新应用
本研究引入模糊时间序列模型,基于重庆34个地面气象观测站的逐日观测资料(1971-2007年)和重庆市旱涝灾害监测预警决策服务系统计算的干旱指数、洪涝指数等数据,对2001-2007年重庆市城口县1月降水、1月平均气温以及春季旱情指数进行了预测分析。研究还比较了模型预测结果与实测值,并与加权集成、人工神经网络集成、数据挖掘集成等模型进行了精度分析。结果显示,模糊时间序列模型在短期气候预测中表现出良好的预测能力和稳定性。
数据挖掘
2
2024-07-29
RBF神经网络在Mackey-Glass时间序列预测中的应用
c语言实现了RBF神经网络对Mackey-Glass时间序列的预测。这种方法利用了RBF神经网络在处理非线性时间序列数据方面的优势。
Matlab
2
2024-08-02