SAS应用于时间序列预测,提供完整的书签,并裁剪适合月度版本。
用于时间序列预测的SAS应用
相关推荐
SAS时间序列分析
SAS 的时间序列,属于那种你用过一次就觉得“哦,原来可以这么干”的工具。它其实不难理解,就是把一堆按时间排的数拿来,去预测下一步要干嘛。挺适合做销量预测、网站访问量这类事儿。基本原理也不复杂。SAS 的套路是:先看趋势,再看波动,再加点统计方法,比如加权平均。简单来说,就是过去数据给多点权重,新数据靠后点,但整体来说,模型还蛮好调的。你可以试试XGBoost和LSTM来做时间序列预测,前者更偏向结构化数据,后者适合更复杂的时间依赖。比如你想预测明天的电量需求,用 LSTM 就挺合适。还有一些不错的参考资料我也整理出来了,像ForecastXGB的结合方式,还有用MATLAB实现的 CNN-B
统计分析
0
2025-06-25
MG时间序列预测神经网络的应用
利用神经网络进行MG时间序列预测已被广泛探讨,介绍了使用Matlab代码的具体实现。
Matlab
17
2024-08-08
时间序列分析预测法
时间序列分析预测法分为三类:
平滑预测法:采用移动平均和指数平滑方法,平滑原始数据趋势线。
趋势外推预测法:利用历史数据拟合趋势函数,预测未来趋势。
平稳时间序列预测法:估计模型参数,根据历史数据预测未来值。
算法与数据结构
21
2024-05-24
MATLAB时间序列预测方法概述
MATLAB中的经典时间序列预测方法包括自回归(AR)、移动平均线(MA)、自回归移动平均线(ARIMA)等多种技术。这些方法已经在各行业展示出色的分类和预测能力。在探索更高级的机器学习方法之前,建议首先熟悉这些经典技术,确保数据准备充分且方法正确。详细介绍了每种方法的实现步骤和使用提示,是入门时间序列预测的理想起点。
Matlab
11
2024-08-23
应用时间序列分析:建模和预测的实践指南
特伦斯·C·米尔斯撰写的《应用时间序列分析:建模和预测的实践指南》已提供高清原版PDF,便于阅读。
算法与数据结构
23
2024-04-30
支持向量机在金融时间序列预测中的应用
支持向量机, 一种基于统计学的新型机器学习和数据挖掘技术, 遵循结构风险最小化原则。金融时间序列数据通常具有非平稳性、复杂性、非线性以及噪声干扰, 传统预测方法难以取得令人满意的效果。本研究提出一种基于支持向量机的金融时间序列预测方法, 并将其应用于上证180指数预测。实验结果表明, 支持向量机方法能够有效地建模动态金融时间序列, 并取得良好的预测效果。
数据挖掘
20
2024-05-12
XGBoost与ForecastXGB的时间序列预测技术
《XGBoost与ForecastXGB的时间序列预测技术》是一篇关于如何利用ForecastXGB包进行时间序列预测的文章。详细介绍了如何利用XGBoost算法结合Rob Hyndman的Forecast包处理时间序列数据,实现精准的预测功能。ForecastXGB包提供了简便的API,有效地处理时间序列数据中的季节性变化等因素。
算法与数据结构
17
2024-08-28
Time-Series Prediction and Applications时间序列预测与应用
时间序列预测的经典书,内容偏技术,但讲得挺清楚,用了不少机器学习的思路来搞预测问题,尤其适合你想从传统方法往 AI 方向转的那种。时间序列的其实并不难,说白了就是把过去的数据串起来,找出规律,往未来推。像天气预报、股市、设备维护都离不开这个。书里开头讲的概念比较基础,比如平稳序列和非平稳序列,趋势、周期这类也都提到了。ARIMA、移动平均这些老方法你早就用腻了,这本书比较妙的地方在于它引入了神经网络、支持向量机、深度学习等算法。虽然不是讲得深入,但用例挺多,能帮你快速了解这些模型在时序场景下咋用。还有一点挺实用:它讨论了多变量时间序列、异常检测、复杂事件这些进阶应用场景。比如你做 IoT 监控
算法与数据结构
0
2025-06-29
MATLAB在时间序列建模预测中的应用及程序示例
时间序列是按时间顺序排列、随时间变化且相互关联的数据序列。时间序列分析是数据分析中一个重要的领域。以下是MATLAB在时间序列建模预测中的具体应用示例。
Matlab
12
2024-07-30