MATLAB开发:基于连续超松弛或非初始参考方法求解空间方程。该程序通过使用SOR方法求解有限差分法中的稳态直流电压问题。
MATLAB开发基于连续超松弛或非初始参考方法求解空间方程
相关推荐
超松弛迭代求解线性方程组算法
使用超松弛迭代算法求解线性方程组的通用程序。
Matlab
3
2024-06-04
Matlab开发随机微分方程求解方法
Matlab开发:随机微分方程求解方法。用于计算随机微分方程的前两个矩。
Matlab
2
2024-08-01
基于非负最小二乘法求解线性方程
非负最小二乘法 (NNLS) 是一种用于求解线性方程组的数值方法,尤其适用于解向量需满足非负约束的情况。
给定线性方程组 A * x = b,NNLS 寻找向量 x,在满足 x 的所有元素非负 (x >= 0) 的前提下,最小化残差平方和 ||A * x - b||^2。
相比于传统的最小二乘法,NNLS 引入非负约束,能够在信号处理、图像分析等领域提供更具物理意义和可解释性的解。
Matlab
2
2024-05-30
基于连续投影法的光谱数据降维算法
光谱数据降维方法正在不断发展,其中连续投影法作为一种重要技术,被广泛应用于光谱数据处理领域。该方法能有效地减少数据维度,提升数据处理效率和分析精度。
算法与数据结构
2
2024-07-22
Matlab开发解析地形积分方程求解器
在Matlab开发中,设计了一个用于解析沃尔泰拉积分方程的地形积分方程求解器。
Matlab
0
2024-09-30
MATLAB求解一维状态空间偏微分方程
利用MATLAB工具箱求解偏微分方程
MATLAB的pdepe指令可以解决形如以下的偏微分方程:
[m frac{partial c}{partial t} + frac{partial }{partial x} left( f(x,t,u, frac{partial u}{partial x}) right) = s(x,t,u, frac{partial u}{partial x}) ]
其中,时间范围为 (0 leq t leq t_f), 空间范围为 (a leq x leq b)。参数m表示问题的对称性,可取0(平板)、1(圆柱)或2(球体)。当(m > 0)时,a必须等于b,表示圆柱或球体的对称性。
方程式中各项的含义如下:
(f(x,t,u, frac{partial u}{partial x})) 表示流通量(flux)。
(s(x,t,u, frac{partial u}{partial x})) 表示来源项(source)。
(c(x,t,u, frac{partial u}{partial x})) 表示偏微分方程的对角线系数矩阵。对角线元素为0表示椭圆型偏微分方程,为正值表示抛物型偏微分方程。
离散化方法
类似于抛物型方程的处理方法,我们将xt平面剖分成矩形网格,x方向步长为h,t方向步长为τ。通过不同的差商近似偏导数,可以得到方程的不同差分格式,并结合离散化的初始条件,得到最终的差分格式。
算法与数据结构
4
2024-04-30
简化热方程求解器基于MATLAB的有限差分方法实现
介绍了如何使用MATLAB开发基于有限差分方法的简易热方程求解器的过程。
Matlab
2
2024-07-26
基于连续电流模式的降压-升压双向转换器设计计算
根据额定电压、额定功率、开关频率和电压纹波系数,可以准确计算双向转换器在连续电流模式下的无源元件操作。这个计算考虑了理想状态以及非理想组件的补偿需求。
Matlab
3
2024-07-31
数值求解一维漂移扩散PDE(电子和离子连续性方程+泊松)-Matlab开发
针对初始均匀等离子体浓度的一维气体二极管,该程序采用均匀细网格上的方法(MOL)求解电子和离子的连续性方程。漂移通量采用Lax-Friedrichs表达式分裂,利用五阶加权ENO方案(WENO5-LF)进行重构。扩散项独立处理,电场强度可通过一维泊松方程的解析解直接计算。边界条件包括阴极的二次电子发射和阳极离子通量的隔离。由于采用WENO5方法,即使在较粗的网格条件下(nx = 80),也能保持较高的精度。生成的MOL ODE系统非僵硬,因此可通过RK方法(如ODE45和ODE23)轻松求解。如有疑问,请随时联系我。
Matlab
2
2024-07-27