线性判别函数
当前话题为您枚举了最新的 线性判别函数。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
线性判别函数与决策边界
线性判别函数利用输入特征的线性组合构建决策边界。以二分类为例,判别函数 g(x) 若大于零,则样本 x 属于类别 C1;反之,若 g(x) 小于零,则样本 x 属于类别 C2。g(x)=0 定义了特征空间中的决策面,用于区分不同类别。
算法与数据结构
7
2024-05-23
超平面几何性质与判别函数解析
3、超平面的几何性质
Ω1 和 Ω2 分别表示两类样本的区域。对于判别函数 g(x),当 g(x) > 0 时,样本点属于 Ω1 类;当 g(x) < 0> 时,样本点属于 Ω2 类。超平面的几何性质决定了分类的边界,并影响判别函数的值域。
Matlab
0
2024-11-06
线性判别分析概念和应用
本资源讲解判别分析概念、Fisher线性判别,并提供相关算例。
统计分析
3
2024-05-12
基于Fisher线性判别的人脸识别系统
这是一个完整的人脸识别系统,使用Matlab编写,基于Fisher线性判别算法。
Matlab
2
2024-07-30
线性判别分析模型预测结果详解-TinyXML指南[中文]
详细讲解了图9.14中线性判别分析模型的预测结果,帮助读者深入理解该模型的运作原理及其在TinyXML中的应用。
算法与数据结构
2
2024-07-25
基于Fisher线性判别分析(LDA)的分类案例数据集
数据集包含基于气候数据进行分类的Fisher线性判别分析(LDA)示例。
数据挖掘
4
2024-05-13
线性判别分析在铜浮选工况识别中的LDA matlab实现
这是一份多类训练集的线性判别分析源代码,专为铜浮选工况识别而设计,采用matlab语言编写。
Matlab
0
2024-08-13
n维线性空间中的斜对称双线性函数
本节讨论数域 F 上的 n 维线性空间 V 的斜对称双线性函数。斜对称双线性函数满足以下性质:
对于任意向量 α ∈ V,f(α, α) = 0。
f(α, β) 在 V 的基下的方阵是斜对称的。
V 中向量关于 f(α, β) 的正交性是对称的。
斜对称双线性函数与斜对称方阵之间存在双射。
进一步,我们给出了斜对称双线性函数的准对角形形式,并证明了其秩与准对角形中非零块的数量之间的关系。
算法与数据结构
4
2024-06-11
粒子群算法求解非线性函数极值
这份资料提供了一种基于粒子群算法的非线性函数极值寻优方法,可以通过模拟粒子群体的行为来搜索问题的最优解。
算法与数据结构
2
2024-05-27
共轭双线性函数与 Hermite 型
共轭双线性函数与 Hermite 型
本节推广了双线性函数的概念。设 f (α, β) 是 n 维复线性空间 V 上的二元函数。如果对任意向量 α,β,α₁,α₂,β₁,β₂ ∈ V,以及任意复数 λ₁,λ₂,μ₁,μ₂ ∈ C,均有:
f(λ₁α₁ + λ₂α₂, β) = λ₁ f(α₁, β) + λ₂ f(α₂, β) (9.4.1)
f(α, μ₁β₁ + μ₂β₂) = μ₁ f(α, β₁) + μ₂ f(α, β₂) (9.4.2)
其中 μ 表示复数 μ 的共轭复数,则二元函数 f (α, β) 称为共轭双线性的。
共轭双线性函数的性质
命题 9.4.1 设 f (α, β) 是 V 上的共轭双线性函数,则对任意 α,β ∈ V,f (α, 0) = 0 = f (0, β)
命题 9.4.2 设 f (α, β) 是 V 上的共轭双线性函数,则对任意 α₁, ... , αp,β₁, ... , βq ∈ V,λ₁, ... , λp,μ₁, ... , μq ∈ C,
f ( ∑^{k=1}{p} λₖαₖ, ∑^{ℓ=1}{q} μℓβℓ) = ∑^{k=1}{p} ∑^{ℓ=1}{q} λₖμℓ f (αₖ, βℓ) (9.4.3)
共轭双线性函数的方阵表示
V 上的共轭双线性函数 f (α, β) 在 V 的基 {ξ₁,ξ₂, ... ,ξn} 下的方阵表示如下:
设向量 α,β ∈ V 在 V 的基 {ξ₁,ξ₂, ... ,ξn} 下的坐标分别是 x = (x₁,x₂, ... ,xn) 与 y = (y₁,y₂, ... ,yn),即 α = ∑^{k=1}{n} xₖ ξₖ, β = ∑^{ℓ=1}{n} yℓ ξℓ, 则由式 (9.4.3),
f (α, β) = f ( ∑^{k=1}{n} xₖ ξₖ, ∑^{ℓ=1}{n} yℓ ξℓ) = ∑_{1⩽k,ℓ⩽n} xₖ yℓ f (ξₖ, ξℓ) (9.4.4)
记 n 阶方阵 A = ( f (ξₖ, ξℓ))_{n×n},则上式化为
f (α, β) = xAy∗ (9.4.5)
其中 y∗ = yT 是 y = (y₁,y₂, ... ,yn) 的共轭转置。方阵 A 称为共轭双线性函数 f (α, β) 在基 {ξ₁,ξ₂, ... ,ξn} 下的方阵。而式 (9.4.4) 称为 f (α, β) 在基 {ξ₁,ξ₂, ...
算法与数据结构
4
2024-05-27