数据集包含基于气候数据进行分类的Fisher线性判别分析(LDA)示例。
基于Fisher线性判别分析(LDA)的分类案例数据集
相关推荐
线性判别分析在铜浮选工况识别中的LDA matlab实现
这是一份多类训练集的线性判别分析源代码,专为铜浮选工况识别而设计,采用matlab语言编写。
Matlab
0
2024-08-13
MATLAB实现判别分析案例
判别分析是一种统计分析方法,用于根据一组特征值识别不同类型的数据。它涉及使用判别函数来确定数据点属于哪一类。MATLAB提供了对判别分析的全面实现,使其能够轻松应用于各种分类任务。
统计分析
4
2024-05-15
线性判别分析概念和应用
本资源讲解判别分析概念、Fisher线性判别,并提供相关算例。
统计分析
3
2024-05-12
SAS判别分析实验结果数据集
这份资源包含SAS判别分析的实验结果以及对应的数据集。
统计分析
3
2024-05-19
局部Fisher判别分析在故障检测与诊断中的应用
局部Fisher判别分析:故障检测与诊断的新视角
本资源探讨局部Fisher判别分析在故障检测与诊断领域的应用潜力,并提供相关的理论数学公式支持,助力相关研究。资源中不包含代码,如有需要,请与我联系。
算法与数据结构
3
2024-05-25
基于Fisher线性判别的人脸识别系统
这是一个完整的人脸识别系统,使用Matlab编写,基于Fisher线性判别算法。
Matlab
2
2024-07-30
线性判别分析模型预测结果详解-TinyXML指南[中文]
详细讲解了图9.14中线性判别分析模型的预测结果,帮助读者深入理解该模型的运作原理及其在TinyXML中的应用。
算法与数据结构
2
2024-07-25
MATLAB中的判别分析技术
判别分析是一种重要的数据分析方法,广泛应用于统计学和机器学习领域。在MATLAB中,判别分析可以通过多种方法实现,例如线性判别分析(LDA)、二次判别分析(QDA)和支持向量机(SVM)等。这些方法不仅能够帮助研究人员有效地处理数据,还可以提供高效的分类和预测能力。此外,MATLAB还提供了丰富的资源,包括相关的源码和PPT,帮助用户深入理解和应用判别分析技术。
Matlab
0
2024-08-25
判别分析效果评估方法
留一法交叉验证: 将已知类别样本逐个剔除,利用剩余样本构建判别函数,对被剔除样本进行判别。
错误率计算: 记录所有被错判的样本,分别计算每个类别和整体的错判率。
效果衡量: 根据错判率的大小评估判别分析的效果,错判率越低,判别效果越好。
统计分析
4
2024-04-30