扩散模型

当前话题为您枚举了最新的 扩散模型。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

一维有限元模型:高斯积分求解扩散方程
一维有限元模型求解扩散方程d/dx ( c du/dx ) + f = 0其中 c 和 f 为常数。可自由设置节点数、高斯正交点、加权因子、c、f 和边界条件。
目标区域下汇率扩散模型的统计分析
利用扩散模型研究人民币对美元汇率,比较两种模型的统计特征。通过GMM方法参数估计,发现第一种模型更适用于我国短期汇率市场。
单域反应扩散模型中的螺旋波Matlab开发
在单域反应扩散模型中,采用Matlab开发模拟螺旋波的系统。
MATLAB通用蒙特卡罗遗传算法扩散模型-uMCGA_matlab
MATLAB通用蒙特卡罗遗传算法(uMCGA)用于解决最小化问题的代码已开发,特别适用于从实验数据中推导出二次有机气溶胶特性。该算法结合了遗传算法和蒙特卡罗方法,支持适应多个数据集的优化参数需求。目前仅支持MATLAB实现。详细用法包括种群大小、蒙特卡罗人口规模、精英候选人数量等。
度量值序列信息扩散估计
通过连续数据挖掘,形成规则度量值序列。通过参数估计,获取度量值特征参数,用于评估规则兴趣度,把握规则演化规律。提出了针对小样本的度量值扩散估计方法,并讨论了不同趋势下的序列参数计算。实验结果表明,该方法准确简便,抗干扰性强。
Matlab实现的平均扩散距离
Matlab实现的平均扩散距离是一种计算技术,用于衡量分子在给定条件下的扩散范围。这项技术利用数学模型和计算算法,分析物质在不同环境中的传播效果。
matlab开发-图像降噪的扩散滤波技术
matlab开发-图像降噪的扩散滤波技术。包括线性扩散滤波、边缘增强线性和非线性各向异性滤波。
Matlab集成C代码PulseqDiffusion脉冲扩散
Matlab集成的C代码PulseqDiffusion:利用开源PyPulseq进行扩展的加权回波平面成像序列扩散加权成像(DWI)在多种临床应用中具有重要意义,如中风和肿瘤特征表征。尽管有多种与供应商无关的后处理工具可供选择,但出于研究目的,目前尚未提供开放源代码的实施。我们推出了PulseqDiffusion,这是一个跨厂商、多切片单次激发自旋回波回波平面成像(EPI)的开发工具,使用基于扩散脉冲序列的开源包PyPulseq。该工具可以扩展以支持多种b值和方向。我们在以下两个方面进行了验证:(i)在体外模型中测量表观扩散系数,(ii)在人体内脑数据中获得高质量的分数各向异性(FA)和平均扩散率(MD)图。我们提供了Matlab中的基本重建软件,用于从原始k空间数据生成图像。在Example_Data文件夹中,提供了在哥伦比亚大学获取的示例数据,包括虚拟数据(3个方向,5个b值,3个切片)、体内数据(12个方向,1个b值,20个切片)和其他方向(3个b值,20个切片)。后续可以使用免费的后处理工具对图像进行处理,生成定量扩散图。软件包中还包含了使用图像分析软件的示例代码。
快速用于扩散成像的标准质量保证管道基于扩散MRI数据的质量保证-matlab开发
快速:扩散成像的标准质量保证管道- De Santis等人。 (提交)用于计算SNR并确定获取QA数据的最佳参数的脚本。 输入:100个b=0图像的nifti文件。 输出:最大b值和体素大小的脚本,用于运行QA,检查b值的线性性,视场上的Gmax均匀性,以及三个逻辑轴上的梯度幂的一致性,并校正梯度不匹配。 输入:使用梯度表Grad_dirs_QA_shuffled.txt获取的体模扩散数据的nifti文件。 输出:带有日期的QA .mat文件,用于比较两个.mat质量保证结果文件的时间稳定性。
Matlab程序实现扩散MRI自动归一化
本项目文件夹包含一个Matlab程序,用于开发基于对侧大脑区域对称性进行扩散MRI归一化的自动方法。 代码功能 利用大脑对称性自动识别病变区域 标准化图像,以便比较不同患者 代码文件说明 im.m: 管理所有图像并将它们保存在编码环境中的目录,使用niftiread方法读取二进制图像文件 main.m: 包含主要代码逻辑,步骤如下: 大脑方向校正: 使用临时方法创建二进制掩码,并使用regionprops方法调整现实生活中RMI扫描获取的数据方向 (其他步骤的描述,根据实际代码内容填写) 代码使用 编译im.m文件 将MATLAB路径更改为包含im.m的目录 运行main.m文件