Hierarchical NMF

当前话题为您枚举了最新的 Hierarchical NMF。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Python代码实现分级Rank2NMF(Hierarchical NMF)
展示了NMF(非负矩阵分解)在Python中的分级Rank2 NMF实现,适用于Python 3.6及以上版本,基于Numpy库的参考代码。以下为该算法的基本流程和实现步骤: 采用分级Rank2 NMF方法,逐步分解矩阵,并进行层次性分解。 使用Python的Numpy库进行数值计算,简化实现过程。 以下为该算法的Python实现代码示例: import numpy as np # 假设输入矩阵X为m×n维 X = np.random.rand(10, 10) # 设置NMF的秩(rank)为2 rank = 2 # 初始化W和H矩阵 W = np.random.rand(X.shape[0], rank) H = np.random.rand(rank, X.shape[1]) # 进行迭代更新(梯度下降或其他方法) for i in range(100): H = H * np.dot(W.T, X) / np.dot(W.T, np.dot(W, H)) W = W * np.dot(X, H.T) / np.dot(np.dot(W, H), H.T) # 输出分解结果 print('W matrix:') print(W) print('H matrix:') print(H) 此代码实现了简单的Rank2 NMF,适用于更复杂的分级结构,通过调整算法细节可进行更深层次的分解。 NMF可以广泛应用于图像处理、文本分析等领域,尤其在处理稀疏矩阵时具有优势。
Hierarchical Analysis MATLAB Code-Cancer
该存储库包含我们题为“用于从整个幻灯片图像中提取格里森组织并分级前列腺癌的扩张式残留分层分割框架”的论文的实现。拟议框架的框图所提出的框架是使用TensorFlow 2.3.1和Keras API与Python 3.7.8开发的。此外,一些预处理步骤和结果汇编也通过MATLAB R2020a执行。下面显示了安装和运行代码的详细步骤: 安装 要运行代码库,需要以下库。虽然该框架是使用Anaconda开发的,但它应该与其他平台兼容。- TensorFlow 2.3.1- Keras 2.3.1- OpenCV 4.4.0- tqdm- Matplotlib 另外,我们还提供了一个yml文件,其中包含所有这些软件包。 数据集 请下载所需的数据集,并按照以下提到的层次结构来训练和测试建议的框架: ├── trainingDataset │ ├── train_images │ │ └── tr_image_1.png │ │ └── tr_image_2.png
Matlab非负矩阵分解NMF-NMF演示文稿
Matlab非负矩阵分解NMF-NMF演示文稿包括非负矩阵分解的讲义和相关程序截图。
Hierarchical Density Order EmbeddingsSpearman的Matlab代码实现
这是在ICLR 2018中实现的模型,使用损失函数学习WordNet上概念的高斯表示。损失函数基于截断的发散,惩罚顺序违规,反映数据的层次结构。学习到的表示捕捉了数据的层次结构,取得了HyperLex任务中的最先进结果。
基于NMF的人脸识别MATLAB程序
这是一个使用NMF分解技术进行人脸识别的MATLAB程序,包含以下部分: nmfpack.part01.rarnmfpack.part02.rarnmfpack.part03.rarnmfpack.part04.rarnmfpack.part05.rarnmfpack.part06.rarnmfpack.part07.rarnmfpack.part08.rarnmfpack.part09.rarnmfpack.part10.rarnmfpack.part11.rarnmfpack.part12.rarnmfpack.part13.rarnmfpack.part14.rar
M-NMF的matlab实现优化方案
研究论文《community preserving network embedding》的matlab实现已支持直接应用于Texas、Cornell等多个数据集。
中科院NMF网络数据挖掘PPT解读
这份PPT是对中科院徐君老师关于NMF网络数据挖掘课程指定论文的解读。内容涵盖了论文的核心观点、研究方法以及实验结果分析,并结合图表和案例进行详细阐述,帮助同学们更好地理解和掌握相关知识。
MATLAB代码优化-BP-NMFBeta流程稀疏NMF
MATLAB代码优化:Beta流程稀疏非负矩阵分解(BP-NMF)是贝叶斯非参数扩展的一部分。介绍了BP-NMF的实现,强调了使用L-BFGS-B解算器来优化多个单变量函数的挑战。为了提高稳定性,可以考虑在非共轭变量上采用单变量求解器,尽管会降低速度。针对大型输入矩阵(如超过2分钟的22.05 kHz信号,具有1024点DFT和50%重叠),建议避免处理大量录音数据。代码包含推理、实用工具和实验部分,所有.ipynb扩展名的文件可以一起运行。此外,还提供了GaP-NMF的Python转换,以及使用随机结构化均值字段和折叠的Gibbs采样器进行推断的代码。
Simple Drum Separation Using NMF MATLAB Development for Chordal Music
----此脚本说明了如何使用NMF提取和弦音乐中的鼓部分。它利用了Mathworks文件交换中可用的NMF和Signal类。该技术的主要流程是: 计算不同频段的起始点。 将整个信号建模为NMF,对应于鼓的分量的H被初始化。 对信号进行过滤。 对于小文件(大约30秒),此代码应该可以正常工作。将此脚本用于研究目的时,请提供相应的参考:@article{LiutkusGPSS,author = {Liutkus, A. and Badeau, R. and Richard, G.},journal = {IEEE Transactions on Signal Processing},title = {Gaussian Processes for Underdetermined Source Separation},year = {2011},month = {July},volume = {59},number = {7},pages = {3155-3167},doi = {10.1109/TSP.2011.2117402}}
图像检索新方法结合NMF与Isomap的研究
非负矩阵分解(NMF)是一种局部特征提取方法,能勾勒相关图像在基矩阵空间的分布。为解决NMF未考虑数据内在几何结构的限制,提出基于NMF与全局非线性降维方法Isomap相结合的新方法。Isomap能有效发现数据内在结构与相关性,实现高维数据的可视化降维。实验显示,该方法在图像检索中能更准确地获取信息,提升检索准确性。