MATLAB代码优化:Beta流程稀疏非负矩阵分解(BP-NMF)是贝叶斯非参数扩展的一部分。介绍了BP-NMF的实现,强调了使用L-BFGS-B解算器来优化多个单变量函数的挑战。为了提高稳定性,可以考虑在非共轭变量上采用单变量求解器,尽管会降低速度。针对大型输入矩阵(如超过2分钟的22.05 kHz信号,具有1024点DFT和50%重叠),建议避免处理大量录音数据。代码包含推理、实用工具和实验部分,所有.ipynb扩展名的文件可以一起运行。此外,还提供了GaP-NMF的Python转换,以及使用随机结构化均值字段和折叠的Gibbs采样器进行推断的代码。
MATLAB代码优化-BP-NMFBeta流程稀疏NMF
相关推荐
NMF的MATLAB代码实现数值优化学期项目指南
NMF的MATLAB代码数值优化实验3:非负矩阵分解作者:林婷@北京大学项目简介该项目title": "NMF MATLAB Code - Numerical Optimization 2020S: Non-negative Matrix Factorization Project", "content": "NMF的 MATLAB 代码数值优化实验3:非负矩阵分解作者:林婷 @ 北京大学介绍参见 report/main.pdf对于配置设置,请在 MATLAB 中运行 run_me_first.m。资料夹和档案:- ./README.md - README file- ./run_me_first.m - Set configuration- ./test_syn.n - test for synthesis data (edit to test)- ./nmf_lm_admm2.m - modified LMF-ADMM- ./database/ - store the database- V1/ - Synthesis data: case 1- V2/ - Synthesis data: case 2- V3/ - Synthesis data: case 3- V4/ - Synthesis data: case 4- V5/ - Synthesis data: case 5
Matlab
0
2024-11-05
Python代码实现分级Rank2NMF(Hierarchical NMF)
展示了NMF(非负矩阵分解)在Python中的分级Rank2 NMF实现,适用于Python 3.6及以上版本,基于Numpy库的参考代码。以下为该算法的基本流程和实现步骤:
采用分级Rank2 NMF方法,逐步分解矩阵,并进行层次性分解。
使用Python的Numpy库进行数值计算,简化实现过程。
以下为该算法的Python实现代码示例:
import numpy as np
# 假设输入矩阵X为m×n维
X = np.random.rand(10, 10)
# 设置NMF的秩(rank)为2
rank = 2
# 初始化W和H矩阵
W = np.random.rand(X.shape[0], rank)
H = np.random.rand(rank, X.shape[1])
# 进行迭代更新(梯度下降或其他方法)
for i in range(100):
H = H * np.dot(W.T, X) / np.dot(W.T, np.dot(W, H))
W = W * np.dot(X, H.T) / np.dot(np.dot(W, H), H.T)
# 输出分解结果
print('W matrix:')
print(W)
print('H matrix:')
print(H)
此代码实现了简单的Rank2 NMF,适用于更复杂的分级结构,通过调整算法细节可进行更深层次的分解。
NMF可以广泛应用于图像处理、文本分析等领域,尤其在处理稀疏矩阵时具有优势。
Matlab
0
2024-11-05
MRI图像稀疏优化重建的DFT Matlab源代码
DFT的Matlab源代码实现了MRI图像的稀疏优化重建。该实现采用非凸惩罚函数,鼓励稀疏性。所选惩罚函数为最小最大凹惩罚(MCP),用户可以通过直接运行main.m来比较流行方法与此实现之间的效果。Randon变换代码和DFT的反投影由Mark Bangert编写,解算器文件位于解算器文件夹中,用户可根据需求选择相应解算器。GIST_MCP.m使用Barzilai-Borwein步长的近端梯度法,而GIST_MCP_Nesterov.m则使用Nesterov加速的近端梯度法。详细的Nesterov加速近端梯度算法说明可参见Bo Wen等人的研究,该研究展示了在非凸非光滑最小化问题中的线性收敛性,得到了香港研究资助局的支持(PolyU253008/15)。
Matlab
0
2024-11-04
BP神经网络Matlab代码的优化实现
BP神经网络Matlab源程序的详细实现方法及学习程序。
算法与数据结构
2
2024-07-24
BP神经网络代码优化
BP神经网络,即Backpropagation Neural Network,是机器学习领域广泛使用的多层前馈神经网络。该网络利用反向传播算法调整权重,以优化预测能力。MATLAB作为强大的数学计算软件,提供了丰富的工具箱,便于用户实现BP神经网络模型。在这个压缩包中,我们推测包含了一系列基于MATLAB编写的BP神经网络代码,用于图像处理任务,如图像增强和图像分割。图像增强可以通过调整亮度、对比度和锐化来改善视觉效果。而图像分割则是将图像分成具有不同特征的多个区域,常用于识别物体、边缘或纹理。BP神经网络能够像素级分类,实现精确的图像分割。在MATLAB中实现BP神经网络需要定义网络结构、选择激活函数并初始化权重,然后通过训练数据进行迭代训练。训练完成后,可以用于新的图像数据预测或处理。MATLAB的神经网络工具箱简化了这一过程,用户可以通过设置参数、调用函数来完成网络构建、训练和测试。
算法与数据结构
5
2024-07-31
Matlab稀疏低秩回归中的香农代码优化研究
Wang等人(2017年)在《计算分子生物学研究国际会议》中提出了一种长期基因型-表型关联研究的新方法,通过时间结构自学习预测模型,利用Matlab编写的稀疏低秩回归论文代码。该函数的优化目标是最小化 ||X'W-Y||_F^2 + gamma1(\sum_i^numG||WQi||_Sp^p)^k + gamma2||W||_{2,q},输入格式包括 n。
Matlab
3
2024-07-16
Matlab仿真代码的稀疏阵生成
随着科技的进步,Matlab在仿真领域的应用越来越广泛,稀疏阵的生成在其中扮演着重要角色。以下是一段关于稀疏阵的Matlab仿真代码示例,可供学术研究和工程实践使用。
Matlab
0
2024-08-31
M-NMF的matlab实现优化方案
研究论文《community preserving network embedding》的matlab实现已支持直接应用于Texas、Cornell等多个数据集。
算法与数据结构
0
2024-08-18
Matlab非负矩阵分解NMF-NMF演示文稿
Matlab非负矩阵分解NMF-NMF演示文稿包括非负矩阵分解的讲义和相关程序截图。
Matlab
0
2024-09-26