overlap-and-add method

当前话题为您枚举了最新的 overlap-and-add method。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Optimized Overlap-and-Add 1D Convolution Highly Optimized Implementation of Linear 1D Convolution with Best DFT Window Selection-MATLAB Development
This function implements linear 1D convolution using the overlap-and-add method. It is fully optimized, and the main loop avoids memory allocation. The function automatically computes the best DFT window for performance. It supports three output modes: Full, Same, and Valid, which align with MATLAB's conv() function. The package also includes a frequency-domain implementation and performance comparisons with two other methods.
ADD注册码分享
ADD注册码分享这是ADD鼓的注册码,使用体验良好,特与大家分享。希望这个平台能成为我们互相学习成长的桥梁。
MATLAB_Add_Grid_To_Image_Code
以下是给照片添加网格的程序。用户可以根据需要自主编辑,调整网格密度。 % 读取图片 img = imread('your_image.jpg'); imshow(img); hold on; % 设置网格密度 grid_density = 20; % 绘制网格 for i = 1:grid_density:size(img, 1) plot([1 size(img, 2)], [i i], 'r'); end for j = 1:grid_density:size(img, 2) plot([j j], [1 size(img, 1)], 'r'); end hold off;
Simplex Method MATLAB Implementation
以下是一个单纯形法的MATLAB实现代码,适合单纯形法入门学习。此程序通过输入标准形式的线性规划问题,求解最优解。程序的基本流程如下: 输入目标函数和约束条件。 将问题转化为标准型。 进行单纯形法迭代,直到找到最优解或判断不可行。 MATLAB代码示例如下: function [x, fval] = simplex(c, A, b) [m, n] = size(A); tableau = [A, eye(m), b; -c', zeros(1, m+1)]; while true % 选择入基变量 [~, pivot_col] = min(tableau(end, 1:n)); if tableau(end, pivot_col) >= 0 break; end % 选择出基变量 ratios = tableau(1:m, end) ./ tableau(1:m, pivot_col); [~, pivot_row] = min(ratios(ratios > 0)); tableau = pivot(tableau, pivot_row, pivot_col); end x = tableau(1:m, end); fval = -tableau(end, end); end function new_tableau = pivot(tableau, pivot_row, pivot_col) new_tableau = tableau; pivot_value = tableau(pivot_row, pivot_col); new_tableau(pivot_row, :) = tableau(pivot_row, :) / pivot_value; for i = 1:size(tableau, 1) if i ~= pivot_row new_tableau(i, :) = tableau(i, :) - tableau(i, pivot_col) * new_tableau(pivot_row, :); end end end 此程序演示了单纯形法的迭代过程,其中pivot函数用于执行每次单纯形迭代中的枢轴操作。输入参数c为目标函数系数,A为约束条件矩阵,b为约束右侧常数。
Newton_Method_Optimization_Scheme
牛顿法实现 使用牛顿法进行优化,能有效提高收敛速度。 MATLAB实现 在MATLAB中实现该算法,通过自定义函数进行优化。 绘图与跟踪 绘制优化过程中的图形,直观展示结果。 记录结点位置 对每一步的结点位置进行记录,便于分析。 耗时对比 进行耗时对比,评估算法性能。
sougou-pinyin-input-method
搜狗拼音输入法是一个高效的中文输入工具,它以其快速、准确的输入体验而闻名。用户可以通过简单的拼音输入,迅速找到所需的汉字,搜狗拼音输入法支持多种个性化设置,满足不同用户的需求。
Gaussian Elimination Method Implementation in MATLAB
高斯消元法的MATLAB实现代码,提供了关于矩阵操作的优质源程序。希望大家积极下载,感谢支持!
Heuristic Method for Efficient Clustering of Uncertain Objects
针对不确定对象的有效和高效聚类的启发式方法在数据挖掘领域,聚类分析是核心技术之一。它通过分析数据对象的属性,将具有相似属性的对象分成同一类群。然而,在现实世界的数据中,对象的位置往往存在不确定性,可以通过概率密度函数(pdf)来描述。探讨的是不确定对象的聚类问题,这些对象的位置具有不确定性。现有的剪枝算法存在一个新性能瓶颈,导致每次迭代时为每个不确定对象分配候选簇的开销。为此,提出了新的启发式方法来识别边界案例的对象,并将它们重新分配到更好的簇中。文中提到的关键技术是UK-means算法,其在传统的K-means算法基础上扩展,能够处理不确定对象的聚类问题。如果考虑平方欧几里得距离,UK-means算法(不使用剪枝技术)简化为K-means算法,运行速度更快,但聚类结果会有所不同。为解决这个问题,提出了一种近似UK-means算法,通过启发式识别边界情况的对象并将它们重新分配。此外,提出了三种用于表示簇代表的模型(均值模型、不确定模型和启发式模型),用于计算对象与簇代表之间的预期平方欧几里得距离。这些模型能更好地比较不确定对象的聚类效果。文章的主要贡献包括:1.分析现有剪枝算法,发现性能瓶颈;2.证明UK-means算法可以简化为K-means算法且速度更快;3.提出近似UK-means算法以高效识别边界对象;4.提供三种簇代表模型,实验验证聚类结果差异降低至70%。实验结果显示,近似UK-means算法的平均执行时间仅多出25%,显著减少K-means算法聚类结果的差异,这些发现对数据挖掘研究人员和实践者具有重要参考价值。
Camera Calibration Using Tsai Method in MATLAB
经典相机标定程序代码基于matlab编程语言,采用Tsai方法进行相机的标定。
DEA_Method_Matlab_Code_Implementation
数据包络法(DEA) MATLAB 代码,用于计算方案的相对有效率和各项指标的权重。以下是实现步骤: 数据准备:收集各决策单元(DMUs)的输入与输出数据。 模型构建:使用 线性规划 构建DEA模型,选择适当的输入和输出。 计算效率:运用MATLAB的优化工具求解线性规划,得到每个DMU的效率值。 权重分配:根据计算结果,分析各项指标的权重。 结果分析:输出相对效率和权重结果,进行进一步的决策分析。