This function implements linear 1D convolution using the overlap-and-add method. It is fully optimized, and the main loop avoids memory allocation. The function automatically computes the best DFT window for performance. It supports three output modes: Full, Same, and Valid, which align with MATLAB's conv() function. The package also includes a frequency-domain implementation and performance comparisons with two other methods.
Optimized Overlap-and-Add 1D Convolution Highly Optimized Implementation of Linear 1D Convolution with Best DFT Window Selection-MATLAB Development
相关推荐
1D_DFT_Convolution_Using_Gaussian_Kernel
DFT的Matlab源代码示例,用于通过DFT实现任意一维函数与高斯核之间的卷积。该代码利用卷积定理,简化计算过程。
Matlab
0
2024-11-04
Phase Interference Method 1D Phase Interference with Uniform Linear Array-MATLAB Development
该程序生成一个图形,用于说明相位干涉测量,其中一个辐射(E,B)在远场区被认为准时的电磁源正以传感器间距的半波长d=λ/2撞击N个元件的均匀线性阵列。在该图中,注意到了连续的相位delta_i,以及阵列的辐射方向图被描述为E(theta),因此该图可用于课程、演示或科学论文。
Matlab
0
2024-11-04
1D AEM反演的Matlab Trans-D代码示例
用于1D AEM(或任何1D模型)反演的Matlab Trans-D代码示例,运行仅需在Matlab路径中包含/ include目录和子目录,按照编号顺序运行命名脚本。基于Blatter等人(2018)和Ray等人(2013,2012)的工作,来自机载瞬态电磁数据的跨维贝叶斯反演泰勒冰川。
Matlab
0
2024-09-26
1D Signal Two-Level Wavelet Decomposition and MATLAB Application
1D Signal Two-Level Wavelet Decomposition Overview
Two-Level Approximation Decomposition: The original signal is averaged every 4 values to capture the approximate components at this level.
Two-Level Detail Decomposition: The difference between every 2 consecutive values in the original signal provides the detailed components at this level.
One-Level Detail Decomposition: The difference between the odd and even-indexed values of the original signal is calculated to extract finer details.
Signal Recovery: After the decomposition, the signal can be reconstructed by combining the approximations and details from each level.
In MATLAB, you can implement these wavelet decompositions to analyze various signals effectively, applying discrete wavelet transform (DWT) functions for both decomposition and reconstruction steps.
Matlab
0
2024-11-06
When Wavelet Meets HMM WHMT for 1D Signal Denoising and Classification in MATLAB
要复制屏幕截图的结果,请运行:测试_WHMM。该脚本是参考文献[1]的实现,包括两部分:1. 一维信号去噪(9~11页) 2. 一维随机过程(RP)分类(第12页)。参考:[1] 使用隐马尔可夫模型的基于小波的统计信号处理:MS Crouse, RD Nowak, RG Baraniuk - IEEE信号处理交易,1998 - dsp.rice.edu。可在:http://scholarship.rice.edu/bitstream/handle/1911/19815/Cro1998Apr1Wavelet-Ba.PDF?sequence=1。确认:作者要感谢Justin Romberg教授的“hmt1d”工具箱和他对如何使用它的友好帮助。
Matlab
0
2024-11-03
基于FDTD方法的1D电磁波仿真MATLAB代码
这里提供了基于FDTD方法的四个MATLAB代码示例,逐步深入探讨电磁场中的Ex和Hy场分量在z方向的传播,包括吸收边界条件(ABC)的应用、脉冲与介质相互作用的模拟,以及正弦波与介质相互作用的仿真。
Matlab
14
2024-07-17
Wasserstein距离计算代码1D中1-和2-Wasserstein距离的Matlab实现
这段代码能够计算在给定样本下,两个均匀概率分布之间的1-Wasserstein距离和2-Wasserstein距离。从图形上来看,它衡量了输入向量的(归一化)直方图之间的距离。详细信息可参阅GitHub存储库。
Matlab
0
2024-09-29
Matlab简单代码mp-quadrature-用于生成通用1D、2D和3D正交规则的多精度算法
1. 引言
在许多数值分析领域中,高阶正交规则(例如Gauss-Legendre,Gauss-Jacobi,Gauss-Lobatto等)的精确计算和列表化至关重要。标准的双精度算术通常仅足以获得14(或更少)个点和权重的精度,因此需要多精度代数库来改善这种情况。尽管用于计算正交规则的标准技术已经有一段时间了,但是某些方法在计算任意精度规则方面比其他方法更好。在这里,我们基于免费提供的GMP,MPFR和GMPFRXX库收集了(希望增长)多种算法,用于生成正交规则。该代码用于将有限元库中的一些一维正交规则制成表格。
2. 安装
要构建库,请键入 ./configure 和 make。您必须同时安装GMP和MPFR库才能构建mp-quadrature库。至少有两个选择:
运行包含的 build_gmp_mpfr.sh 脚本。这会将GMP和MPFR从源代码下载、构建并安装到 ./gmp 和 ./mpfr 目录中。然后,配置脚本将自动找到这些脚本。
使用以下选项来配置系统的GMP和MPFR安装位置:
--with-gmp-include=/path/to/gmp/include 等参数来指定库的路径。
Matlab
0
2024-11-05
SOM Neural Network Classification Tutorial 1D Matrix Classification for 2-Class and 3-Class Problems in MATLAB
This tutorial demonstrates how to perform 1D matrix classification for 2-class and 3-class problems using a Self-Organizing Map (SOM) neural network. It includes a matrix-based AND gate example with input samples of sizes 12 and 3. The approach uses machine learning principles to classify the data, making it suitable for tasks such as pattern recognition and clustering. The MATLAB code provided helps implement and visualize the classification process in a straightforward manner. The classification results can be interpreted using the SOM algorithm, which adjusts the map neurons based on the input data features.
Matlab
0
2024-11-06