Hermite权重
当前话题为您枚举了最新的Hermite权重。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Hermite Quadrature用户节点定制的Hermite权重计算
这个程序可以计算用户指定的一组网格点的Hermite Quadrature权重。通过使用函数值及其在网格点处的一阶导数,对函数f(x)在网格上进行数值积分。
Matlab
0
2024-09-26
Hermite 插值数值分析实验
本实验重点探讨 Hermite 插值在数值分析中的应用,提供了公式推导、伪代码、具体实现以及程序编写思路。文中包含具体示例,帮助读者理解 Hermite 插值算法。
算法与数据结构
5
2024-04-29
AHP权重确定方法
AHP(层次分析法)用于指标权重确定,涉及方法、概念和规则。可帮助为建模做准备。
算法与数据结构
2
2024-05-15
Matlab编程Hermite多项式开发
使用Matlab开发Hermite多项式,生成阶数为n的Hermite多项式hn(x)。
Matlab
0
2024-08-12
AHP权重计算指南
AHP权重计算指南
本指南详细介绍了层次分析法(AHP)中权重计算的步骤,包括:
层次单排序及其一致性检验
层次总排序及其一致性检验
权重的最终计算方法
算法与数据结构
3
2024-05-25
共轭双线性函数与 Hermite 型
共轭双线性函数与 Hermite 型
本节推广了双线性函数的概念。设 f (α, β) 是 n 维复线性空间 V 上的二元函数。如果对任意向量 α,β,α₁,α₂,β₁,β₂ ∈ V,以及任意复数 λ₁,λ₂,μ₁,μ₂ ∈ C,均有:
f(λ₁α₁ + λ₂α₂, β) = λ₁ f(α₁, β) + λ₂ f(α₂, β) (9.4.1)
f(α, μ₁β₁ + μ₂β₂) = μ₁ f(α, β₁) + μ₂ f(α, β₂) (9.4.2)
其中 μ 表示复数 μ 的共轭复数,则二元函数 f (α, β) 称为共轭双线性的。
共轭双线性函数的性质
命题 9.4.1 设 f (α, β) 是 V 上的共轭双线性函数,则对任意 α,β ∈ V,f (α, 0) = 0 = f (0, β)
命题 9.4.2 设 f (α, β) 是 V 上的共轭双线性函数,则对任意 α₁, ... , αp,β₁, ... , βq ∈ V,λ₁, ... , λp,μ₁, ... , μq ∈ C,
f ( ∑^{k=1}{p} λₖαₖ, ∑^{ℓ=1}{q} μℓβℓ) = ∑^{k=1}{p} ∑^{ℓ=1}{q} λₖμℓ f (αₖ, βℓ) (9.4.3)
共轭双线性函数的方阵表示
V 上的共轭双线性函数 f (α, β) 在 V 的基 {ξ₁,ξ₂, ... ,ξn} 下的方阵表示如下:
设向量 α,β ∈ V 在 V 的基 {ξ₁,ξ₂, ... ,ξn} 下的坐标分别是 x = (x₁,x₂, ... ,xn) 与 y = (y₁,y₂, ... ,yn),即 α = ∑^{k=1}{n} xₖ ξₖ, β = ∑^{ℓ=1}{n} yℓ ξℓ, 则由式 (9.4.3),
f (α, β) = f ( ∑^{k=1}{n} xₖ ξₖ, ∑^{ℓ=1}{n} yℓ ξℓ) = ∑_{1⩽k,ℓ⩽n} xₖ yℓ f (ξₖ, ξℓ) (9.4.4)
记 n 阶方阵 A = ( f (ξₖ, ξℓ))_{n×n},则上式化为
f (α, β) = xAy∗ (9.4.5)
其中 y∗ = yT 是 y = (y₁,y₂, ... ,yn) 的共轭转置。方阵 A 称为共轭双线性函数 f (α, β) 在基 {ξ₁,ξ₂, ... ,ξn} 下的方阵。而式 (9.4.4) 称为 f (α, β) 在基 {ξ₁,ξ₂, ...
算法与数据结构
4
2024-05-27
使用Matlab开发Hermite插值多项式
该函数能够基于提供的数据生成Hermite插值多项式,适用于各种数值计算和数据拟合需求。
Matlab
0
2024-09-28
加权平均矩阵模板窗口乘以位置作为权重并除以总权重的MATLAB开发
在MATLAB开发中,图像的模板窗口会根据位置计算加权平均矩阵,将位置作为权重因子,并最终除以总权重。这种方法可以有效提高图像处理的精度和效率。
Matlab
0
2024-10-01
Matlab开发之分片Hermite三次插值
本项目实现分片Hermite三次多项式插值。该方法利用函数值和相应的导数进行插值,能够有效提高数据拟合的精度。
Matlab
0
2024-10-31
利用 GA 优化等式约束下的权重
使用遗传算法在 MATLAB 中优化权重,同时满足等式约束。
数据挖掘
8
2024-05-01