MATLAB_Integration_of_C_Code_for_Decel_Sim_Pulse_Stark_Decelerator_Simulation
MATLAB集成的C代码#####减速器模拟器大约2015年5月由D.雷恩斯#####书面1/16/18 decel-sim在JILA的Ye实验室中模拟脉冲式Stark减速器。它替代了撰写时可以在以下位置找到的C++代码库:jilafile.colorado.edu/scratch/ye/common/ColdMolecules/Simulations/mclass_dave/。先前的代码库主要由Brian Sawyer和Eric Hudson编写,尽管不确定Ben Stuhl可能也做了多少工作。我成功完成了这项工作,但由于集成了绘图和模拟数据分析功能,因此发现使用MATLAB可以最快地完成科学工作。在撰写时,也可以在jilafile上找到decel-sim:jilafile.colorado.edu/scratch/ye/common/ColdMolecules/Simulations/MatlabSim/decel-sim/。密钥代码文件名为simd。
Matlab
0
2024-11-04
pulse-superboot压缩包
pulse-superboot.zip文件提供了一个简单的工具包。
DB2
2
2024-07-12
Matlab 脉冲压缩代码 astrocomb_pulse
astrocomb_pulse:Matlab 脉冲压缩代码
该代码基于 sspropag 库。
截至 2019 年 3 月 14 日,约 150 fs 脉冲宽度的最佳脉冲参数:
P_RF:25.5
脉冲压缩器光纤长度:180 米(170 米标准光纤 + 10 米随机光纤)
EDFA 内光纤长度:第一级 8 米,第二级 10 米
EDFA 功率:2.5-3 瓦
HNLF 长度:10 米
光纤压缩机长度:1.5 米
Matlab
4
2024-05-23
Matlab Tutorial on Curve Fitting with Cubic Numerator and Quadratic Denominator
This tutorial covers curve fitting using cubic numerator and quadratic denominator in Matlab.
Matlab
0
2024-08-26
l-curve_matlab_code_for_cgDNA
l-曲线 MATLAB 代码与 cgDNA:DNA的序列依赖性粗粒模型的实现方法,通过模拟 DNA 序列的特征,深入分析其结构和功能。该模型不仅能够有效展示 DNA 的复杂性,还提供了对序列变化的灵敏响应,便于科研人员进行进一步研究和探索。
Matlab
0
2024-11-04
Morlet Wavelet MATLAB Code for Muse Project
Morlet小波的MATLAB代码。MuseProject该存储库包含可用于预处理Muse头带的数据,并对其应用ML模型以基于RGB颜色对数据进行分类的代码。editmusefilewithtime.py该文件用于编辑来自缪斯应用程序MIND MONITER的RAW文件。该文件分为多个子文件,这些子文件包含当人们看到红色、绿色和蓝色时的实例数据。由于在我们的案例中,一个实验包含每种颜色的20个试验,因此我们得到了60个csv文件,其中分别有20个文件为红色、绿色和蓝色。musecombinedimage.m为了从数据中获得频谱图图像,我们使用MATLAB。通过应用Morlet小波变换,可以获得每个电极以及电极组合的图像。museexpfinal_lastrun.py该文件用于运行视觉实验。它使用Python的Psychopy库。runmuseapp.sh该Shell脚本运行代码以预处理数据并以可训练的格式获取数据。mlmodelmuse此文件夹具有已应用于数据的模型。随着工作的进展,该存储库将被更新。
Matlab
0
2024-11-04
AdventureWorks 2008 Analysis Services Project
《SQL Server 2008报表服务从入门到精通》是一本帮助读者深入理解和熟练掌握SQL Server 2008报表服务的专著。在这个项目中,我们将探索与数据分析、数据仓库和商业智能相关的关键技术。AdventureWorks是一个广泛应用于SQL Server教学和实践的示例数据库。重点是利用Analysis Services构建数据立方体,支持多维数据模型设计和MDX查询语言应用。报表服务(SSRS)与Analysis Services集成,用于创建交互式、定制化的业务报表,涵盖销售分析、客户行为、产品性能等多个方面。数据挖掘技术也在项目中应用,以发现数据中的模式和趋势。
SQLServer
2
2024-08-03
Least Squares Fitting of Circle Curve Using Least Squares Method
This resource demonstrates the use of Least Squares Method to fit a circle curve. The output includes the coordinates of the center and the radius of the fitted circle.
Matlab
0
2024-11-06
Genetic Operators and MATLAB Code for Numerical Analysis
3.2 Genetic Operators
(1) Crossover Operator
The crossover operator randomly pairs individuals from the parent population for crossover operations, generating ( m ) offspring individuals to form the next generation. Two types of crossover are employed: single-point crossover and two-point crossover. Given two individuals for crossover ( P = {p_1, p_2, p_3, \dots, p_n} ) and ( Q = {q_1, q_2, q_3, \dots, q_n} ), a random crossover point ( b_1 ) is chosen from the range [1, n] for single-point crossover. The elements before ( b_1 ) in ( P ) are copied to offspring individual ( \text{new Individual1} ), while the remaining elements are copied from ( Q ). Similarly, a second offspring ( \text{new Individual2} ) is generated by swapping the roles of ( P ) and ( Q ). In two-point crossover, two random crossover points ( b_1 ) and ( b_2 ) are chosen, and the elements between ( b_1 ) and ( b_2 ) in ( P ) are copied to the offspring, with the remaining elements taken from ( Q ).
(2) Mutation Operator
After the crossover operation, two mutation operators are applied to the offspring individuals. The first is rotation mutation, where a random position ( \text{bit} ) is chosen, and with probability ( p_m1 ), the portion of the individual after ( \text{bit} ) is rotated. The second is position mutation, with a smaller probability ( p_m2 ), two integers ( \text{bit1} ) and ( \text{bit2} ) are randomly chosen from the range [1, n], and the corresponding parts of the individual are swapped.
(3) Selection Operator
The fitness of the mutated offspring individuals is evaluated using the lowest level line method. The parent and offspring individuals are ranked by their fitness in descending order, and the top ( m ) individuals are selected as the next generation's parents.
3.3 Termination Criteria
The steps in sections 3.2(1), 3.2(2), and 3.2(3) are repeated until the fitness of the best solution meets the required threshold or the pre-defined number of generations is reached. At this point, the optimal solution is output.
4. Case Study
To test the performance of the algorithm, two cases from literature [3] are solved. In Case 1, a large rectangle of size ( 15 \times 40 ) is divided into 25 smaller rectangles. Based on the lowest level line method, the corresponding coding sequence is ( \text{Opt} = {1, -9, 11, -15, 17, -24, -25, -10, -14, -22, -23, -2, -3, -5, 18, 7, -8, -12, 19, -20, 21, 6, 13, 4} ). The width is set at 40, and height considerations follow suit for the genetic algorithm implementation.
Matlab
0
2024-11-06