l-曲线 MATLAB 代码与 cgDNA:DNA的序列依赖性粗粒模型的实现方法,通过模拟 DNA 序列的特征,深入分析其结构和功能。该模型不仅能够有效展示 DNA 的复杂性,还提供了对序列变化的灵敏响应,便于科研人员进行进一步研究和探索。
l-curve_matlab_code_for_cgDNA
相关推荐
L-PGC Matlab Code Spatial Gene Interactions and Polar Gini Curve Source Code
L-PGC represents the polar Gini curve for spatial gene interactions. This manuscript provides the source code for the L-PGC method, implemented in Matlab. The code has been tested and is compatible with Matlab 2019 and higher versions. All related source code and data files are available for download in the repository. Below are the instructions for running the code and analyzing the data:
A. Running the Code:Download the dataset before running the pipelineExample.m script. This script will demonstrate how to implement the L-PGC algorithm.
B. Dataset Analysis:Instructions for dataset analysis are available in the downloaded documentation.
C. Simulated Expressions:The complete dataset and source code for simulating gene expressions are also included in the download package.
Matlab
0
2024-11-06
MATLAB Linear Curve Fitting Code for Pulse Feeding Analysis-E.coli Pulse/Division Project
This document provides data and code for analyzing and generating graphs related to the E. coli pulse/saturation project. The provided MATLAB and Python codes are designed for pulse feeding analysis and were written in MATLAB R2015b. If you use any of the data or code, please cite the following paper: Karthik Sekar, Roberto Rusconi, John T Sauls, Tobias Fuhrer, Elad Noor, Jen Nguyen, Vicente I Fernandez, Marieke F Buffing, Michael Berney, Suckjoon Jun, Roman Stocker, Uwe Sauer. Molecular Systems Biology, 2018; 14(11): e8623. Published on November 5, 2018. DOI: 10.15252/msb.20188623.
The repository is divided into the following sections:
Part 1 - Data and Analysis of Lag Time vs. Feeding FrequencyThis section contains all the OD data and code for the wild-type pulse experiments. The code generates the following graphs:- All OD vs. Time plots with linear threshold fitting.- Relationship between lag time, feeding rate, and linear growth rate.- Summary table for the total glucose needed for proliferation and feeding speed.
Part 2 - Flow Cytometry
Matlab
0
2024-11-06
NURBS Curve and Surface Toolbox for MATLAB
该工具箱包含了各种绘制NURBS曲线和NURBS曲面的程序。对于从事曲面设计或相关领域的工作者来说,非常有用;同时,也为学习MATLAB编程提供了强大的支持,帮助用户更好地掌握该语言的应用。
Matlab
0
2024-11-06
Matlab Tutorial on Curve Fitting with Cubic Numerator and Quadratic Denominator
This tutorial covers curve fitting using cubic numerator and quadratic denominator in Matlab.
Matlab
0
2024-08-26
FRENET-Serret Space Curve Invariants A MATLAB Guide
FRENET - Frenet-Serret空间曲线不变量
函数定义:[T, N, B, k, t] = frenet(x, y);[T, N, B, k, t] = frenet(x, y, z);
该函数用于计算空间曲线的不变量,通过输入向量 x、y 和 z 返回一系列向量和缩放量的结果。当省略z时,曲线为二维,函数仍然有效。
公式描述:
T(切线):\( T = \frac{r'}{|r'|} \)
N(法线):\( N = \frac{T'}{|T'|} \)
B(双法线):\( B = T \times N \)
k(曲率):\( k = |T'| \)
t(扭转):\( t = \text{dot}(-B', N) \)
示例代码:
% 生成三维曲线样本
theta = 2 * pi * linspace(0, 2, 100);
x = cos(theta);
y = sin(theta);
z = theta / (2 * pi);
% 计算Frenet不变量
[T, N, B, k, t] = frenet(x, y, z);
% 三维图形显示
line(x, y, z);
quiver3(x, y, z, T(:,1), T(:,2), T(:,3));
以上代码生成三维曲线并绘制切线向量。函数frenet计算得出的向量 T、N、B 以及缩放量 k、t可用于空间曲线的深入研究。
Matlab
0
2024-11-05
3D Curve Plotting in MATLAB with plot3
三维曲线图 plot3
基本的三维图形指令: plot3(X,Y,Z)- X,Y,Z 是长度相同的向量,绘制一条分别以向量 X,Y,Z 为 x,y,z 轴坐标值的空间曲线。
plot3(X,Y,Z): X,Y,Z 均是 mxn 的矩阵,绘制 m 条曲线,第 i 条曲线分别以 X,Y,Z 矩阵的第 i 列分量为 x,y,z 轴坐标值的空间曲线。
plot3(x,y,z,s): 带开关量 plot3(x1,y1,z1,'s1', x2,y2,z2,'s2', …)
使用 plot3 可以方便地创建三维空间中的曲线,为数据可视化提供强有力的支持。
Matlab
0
2024-11-02
使用MATLAB进行L2范数计算的源码-hqp_l1hqp_l1
MATLAB源码用于严格分层线性规划中L2范数的加权方法存储库,适用于机器人控制。使用L1范数作为正则化步骤可以实现对机器人系统的稀疏或简约控制。此存储库包含提交给IEEE RA-L/ICRA审查的论文的源代码,正在审核中。即将发布的文档提升代码的可读性。实验视频展示了双臂控制中WLP-L1算法和WLP-L2算法的效果,以及对偶技巧的重构。对偶技巧的源代码可在对偶技巧文件夹中找到,用于将字典线性程序重新表述为单目标线性程序。要运行此代码,需要安装MATLAB和Yalmip工具箱,并建议安装免费学术许可证的Gurobi以重现报告的计算性能。另外,还提供了用于分层二次规划的未记录的对偶技巧的实现。该代码在Ubuntu 18.04LTS上测试,并包括Python3.7或更高版本的依赖项CasADi和PyBullet,用于任务功能的自动区分和优化求解器接口,以及模拟和可视化机器人运动。
Matlab
0
2024-08-22
Matlab Rectangular Segmentation Code-SGIR Test Code
Matlab椭圆分割代码,方法为“IASR:弱监督语义分割的迭代注释选择和细化”的测试代码。测试步骤如下:第一步:下载压缩模型,密码为:bg15或放入根目录解压。我们已发布与密码:y970的汇总手稿中表6的步骤P1到P4对应的所有模型。第二步:更改retored模型的根并运行test_vocSGIR_vgg.py进行SGIR-vgg16评估,多尺度融合的预测将保存在SAVE_DIR = './result/'中。在PASCAL VOC 2012验证数据集上可实现59.3的平均IoU。第三步:更改retored模型的根并运行test_vocSGIR_resnet进行SGIR-resnet101评估,多尺度融合的预测将保存在SAVE_DIR = './resultresnet/'中。在PASCAL VOC 2012验证数据集上可实现64.0的平均IoU。第四步:后处理请参考运行CRF。第五步:我们已提供用于评估的matlab代码,您可以评估结果并自行获取IoU,请参阅相关文档。
Matlab
0
2024-11-01
MATLAB RANSAC Code for SLAM
MATLAB RANSAC 代码
Matlab
0
2024-11-01