This code is an exercise that adds the diagonal elements of any matrix. The sum of the diagonal elements can be easily calculated using MATLAB functions. To achieve this, use the built-in function to access and sum up the elements along the diagonal of the matrix.
Matrix Diagonal Sum in MATLAB Development
相关推荐
Matlab Matrix Operations-Basics of Vector and Matrix Calculations in Matlab
Matlab基础向量与矩阵运算
在Matlab中,矩阵运算是核心功能之一,主要包括以下几种操作:
矩阵加法:对于两个矩阵A和B,它们的维度必须相同才能进行加法运算。运算符是+,例如:C = A + B;
矩阵乘法:矩阵的乘法规则是:A的列数必须等于B的行数,运算符是*,例如:C = A * B;
矩阵转置:使用单引号(')来转置矩阵,例如:C = A';
矩阵求逆:对于方阵A,可以使用inv函数来求逆,例如:B = inv(A);
点积与叉积:Matlab支持向量的点积和叉积,例如:dot_product = dot(A, B);cross_product = cross(A, B);
通过这些基本的矩阵操作,可以完成大量的数学计算,广泛应用于数据分析、工程计算等领域。
Matlab
0
2024-11-06
Matrix vs Array Operations in MATLAB
矩阵运算和数组运算的对照表:
| 矩阵算法 | 数组算法 | 命令形式 | 功能含义 ||------------------|--------------------|--------------------|---------------------------------------|| A’ | A.’ | 求矩阵A的共轭转置 | 求数组A的非共轭转置 || x±A | x±A | 标量x与矩阵A元素和或差 | 标量x与数组A元素和或差 || x×A | x.*A | 标量x与方阵A各元素积 | 标量x与数组A各元素积 || x×inv(A) | - | 标量x与方阵A的逆矩阵积 | - || x./A, A.\x | - | 标量x分别除以矩阵A元素 | 标量x分别除以数组A元素 |
Matlab
0
2024-11-01
Matrix Multiplication Transformation Significance in MATLAB
在本例中,矩阵相乘的变换意义通过将M和P相乘,得到的矩阵设为Q。Q的第一行第一列元素为Q(1,1) = 0.1×4000 + 0.3×2000 + 0.15×5800 = 1870。由此可以看出,Q表示了夏季消耗的原材料总成本。从线性变换的角度来看,Q矩阵把以件数为单位的产品空间映射到了以元为单位的成本空间。
Matlab
0
2024-11-04
Matrix Operations in MATLAB A Basic Tutorial
矩阵运算 A = [1 2 3 ; 4 5 6 ; 7 8 9]; B = [1 2 3 ; 4 5 6]; C = [1 0 1 ; 0 2 3 ; 4 5 0];A + C = A + CBA = B * AdetA = det(A)traceA = trace(A)BT = B'invA = inv(A)rankA = rank(A)[EigenVectors, EigenValues] = eig(A)
Matlab
0
2024-11-06
Energy Control Problem Code in MATLAB-GCNMF-s2k Group Constrained Non-negative Matrix Factorization with Sum-k Constraint for Load Disaggregation
Energy Control Problem Code in MATLAB: Non-Intrusive Load Monitoring (NILM) for HVAC Systems
This repository contains the dataset we collected for HVAC energy disaggregation, as well as the source code and demonstrations from our paper in IEEE Transactions on Power Systems. To the best of our knowledge, this is the first dataset collected for studying Non-Intrusive Load Monitoring (NILM) applied to Heating, Ventilation, and Air Conditioning (HVAC) systems.
Energy disaggregation or Non-Intrusive Load Monitoring (NILM) addresses the problem of extracting device-level energy consumption information by monitoring the aggregated signal at a single measurement point, without the need to install meters on each individual device. This can be framed as a source separation problem where the aggregated signal is represented as a linear combination of the basic vectors in a matrix factorization framework.
In this work, we utilize machine learning to predict the energy consumption pattern of each device over the course of a day. The project is part of our collaboration with [institution name].
Prerequisites:
MATLAB R2015a
Datasets
(Temporarily unavailable. Will be available once the required permissions are granted. Apologies for the inconvenience!)
Experiments
We designed two different experiments to evaluate our proposed algorithm. The first experiment disaggregates the energy of the entire household into the energy consumption of all devices within the home.
Matlab
0
2024-11-06
Matrix Decomposition Recommendation Algorithm MATLAB Implementation
矩阵分解的推荐算法MATLAB实现,直接运行main.m
Matlab
0
2024-11-04
Concatenate Cell Matrix of Different Sizes in MATLAB
% Concatene 单元矩阵(按行或按列),无论大小如何,用 NaN 填充缺失的单元。% 该函数概括了之前的函数 K_cRows 和 K_cCols。% % c = K_cCells(b,a,'row') 或 c = K_cCells(b,a,'everyCharOrNumber') 用于按 行; % c = K_cCells(b,a,'col') 用于按 列; % A = {'a11','a12';'a21','a22'} % >> A = 'a11' 'a12' 'a21' 'a22' % >> B = {'b11','b12','b13'; 'b21','b22','b32'; 'b31','b32','b33'} % >> B = 'b11' 'b12' 'b13' 'b21' 'b22' 'b31' 'b32' 'b33' % >> C = K_cCells(A,B) % C
Matlab
0
2024-11-04
Matrix永久计算MATLAB开发指南
设A=(a_{ij})是一个n × n实矩阵。 A的永久定义为每(A)= sum_{\sigma} a_{1,sigma(1)}a_{2,sigma(2)}...a_{n,sigma(n)} ,其中和通过集合{1,2,...,n}上所有可能的排列σ,而σ(i)代表σ下数字i的图像。这个程序专门处理方阵永久的计算。矩阵的永久在多个领域中非常关键,特别是在组合学中,它被用来描述系统的配置或图的结构。[1] RABrauldi,组合学入门,第四版,培生教育。
Matlab
0
2024-08-09
Generalized Prediction Matrix Parameter Positive Definiteness in MATLAB
在MATLAB中,实现广义预测模型的参数整定仿真。该过程包括对预测矩阵的正定性分析和参数优化。具体步骤包括数据预处理、模型构建、参数调整及仿真结果的验证。通过这些步骤,确保模型能够有效捕捉数据中的动态变化。
Matlab
0
2024-11-04