提出了两种新颖的特征选择算法。第一个是过滤方法,而第二个是包装方法。两种算法都依赖于多目标优化中的拥挤距离来衡量特征的重要性,对特征进行有效排序。较少拥挤的特征在目标属性(如类标签)上表现出更大的影响力,从而优化了特征选择的精度。实验结果验证了所提算法在不同数据集上的有效性鲁棒性,展现了其在复杂场景中的适应能力。