特征选择是模式识别和机器学习领域中不可或缺的技术,从一组特征中挑选出最有效的以降低特征空间维度。在当前海量高维数据的背景下尤为重要,通过选择合适的特征选择算法,可以去除不相关和冗余特征,提升学习算法的泛化性能和运行效率。特征选择广泛应用于文本分类、生物信息学和信息检索等领域。
基于特征聚类集成技术的组特征选择方法
相关推荐
基于能量的集成特征选择方法(2012年)
特征选择是机器学习和数据挖掘领域的关键问题之一,而特征选择的稳定性也是目前的一个研究热点。基于能量学习模型,分析了基于局部能量的特征选择方法,并根据集成特征选择的原理,对基于局部能量的特征排序结果进行集成,以提高算法的稳定性。在现实数据集上的实验结果表明,集成特征选择可以有效提高算法的稳定性。
数据挖掘
0
2024-08-08
基于快速聚类的髙维数据特征选择算法
这篇论文探讨了一种针对高维数据的特征选择算法,该算法利用快速聚类技术提高效率,为数据挖掘领域的学者和实践者提供了有价值的参考。
数据挖掘
2
2024-05-25
特征选择的计算方法
这本最新的CRC数据挖掘系列丛书介绍了特征选择的前沿思想和算法。
数据挖掘
2
2024-07-24
基于邻域辨别力的特征选择方法
特征选择作为模式识别、机器学习和数据挖掘的关键预处理步骤,其重要性不言而喻。邻域作为分类学习中的核心概念,能够有效区分决策不同的样本。我们提出一种新的邻域辨别力指数,用于量化邻域关系中的差异信息,进而反映特征子集的区分能力。区别于传统的基于邻域相似度的方法,该指数直接利用邻域关系的基数进行计算。为了全面捕捉多个特征子集组合带来的区分信息变化,我们进一步扩展了辨别力指数,引入了联合辨别力指数、条件辨别力指数以及互信息辨别力指数。这些扩展指标与香农熵及其变体具有相似的性质。针对实值数据的分析,我们在辨别力指数中引入了一个名为“邻域半径”的参数。基于提出的辨别力指数,我们定义了候选特征的显著性度量,并设计了一种贪婪特征选择算法。实验结果表明,基于辨别力指数的算法相较于其他经典算法,取得了更优的性能。
数据挖掘
4
2024-05-21
基于全局特征和核力场的时间序列聚类研究
聚类分析在时间序列数据挖掘中扮演着至关重要的角色,是众多领域应用的关键,例如医学图像分析、气象预测和金融市场分析等。然而,如何有效地对长时间序列进行聚类分析仍然是一个具有挑战性的课题。
本研究提出了一种基于全局特征和核力场的长时间序列聚类方法。该方法首先提取时间序列的全局特征,然后利用核力场对这些特征进行聚类。实验结果表明,该方法能够有效地对长时间序列进行聚类,并且具有较高的准确性和效率。
数据挖掘
4
2024-05-24
无穷特征筛选基于图的特征过滤技术
无穷特征筛选是一种基于图的特征过滤方法,通过图结构分析和数据处理,实现对特征的有效筛选和优化。
Matlab
3
2024-07-19
空间聚类助力MCS动力场特征研究
利用空间聚类(CLARANS)方法分析动力场(涡度、散度、垂直速度)分布特征,发现MCS发展和东移的动力学条件:西侧强辐合中心、垂直上升中心和向东正涡度平流。
数据挖掘
3
2024-05-25
选择聚类算法
探索聚类算法以有效提取 Web 数据洞察力。
数据挖掘
3
2024-05-25
基于特征向量的动态增量聚类算法研究及设计(2012年)
在数据挖掘领域,聚类是处理数据初始阶段的重要方法。在动态系统中,随着新数据的不断增加,重新聚类既费时又浪费资源。首先介绍了聚类的基本概念和分类,然后提出了一种基于特征向量的增量聚类算法。该算法仅针对新增数据进行聚类,从而节省了大量资源和时间。通过实验比较了该算法与传统重新聚类方法在动态系统中处理新增数据的效果,验证了其可行性。
数据挖掘
0
2024-08-03