Deep Learning Trends and Fundamentals
深度学习历史趋势
一、深度学习历史趋势
神经网络的众多名称和命运变迁:
早期发展:20世纪50年代末至60年代初,神经网络研究开始兴起,受到广泛关注。
第一次寒冬:1970年代,由于理论和技术上的限制,神经网络研究进入低谷期。
反向传播算法的引入:1980年代中期,反向传播算法的提出极大地推动了神经网络的研究和发展。
第二次寒冬:1990年代中期,尽管有了突破性的进展,但由于计算资源和数据量的限制,神经网络再次遭遇挫折。
深度学习的复兴:21世纪初至今,随着GPU技术的发展、大数据时代的到来以及算法的不断创新,深度学习迎来了爆发式的增长。
与日俱增的数据量:
互联
算法与数据结构
8
2024-10-31
Database Basic Operations Guide
数据库的基本操作
创建数据库
在进行任何数据库的操作之前,首先需要创建数据库。创建数据库的基本语法结构如下所示:
CREATE DATABASE 数据库名
ON ( NAME = '数据文件逻辑名称', FILENAME = '数据文件物理路径', SIZE = 初始大小, MAXSIZE = 最大大小, FILEGROWTH = 增长量)
LOG ON ( NAME = '日志文件逻辑名称', FILENAME = '日志文件物理路径', SIZE = 初始大小, MAXSIZE = 最大大小, FILEGROWTH = 增长量);
例如,在SQL Server 2014中
SQLServer
6
2024-11-01
Database Basic Operations in Chapter 3
在IT领域,数据库是至关重要的组成部分,用于存储和管理数据。本章主要聚焦于数据库的基础操作,涵盖了创建、删除数据库以及探讨不同的存储引擎。以下是详细的知识点解析: 1. 创建数据库: 创建数据库是初始化数据库管理系统的过程,为数据提供存储空间。在MySQL中,创建数据库的SQL语句是 CREATE DATABASE database_name; 这里的 database_name 是你想要创建的数据库的名称。创建数据库后,系统会在磁盘上分配特定区域用于存储数据。 2. 删除数据库: 删除数据库会永久性地从磁盘上移除数据库及其所有数据,因此需谨慎操作。MySQL中,删除数据库的命令是 DROP
MySQL
5
2024-11-03
Matrix Operations in MATLAB A Basic Tutorial
矩阵运算 A = [1 2 3 ; 4 5 6 ; 7 8 9]; B = [1 2 3 ; 4 5 6]; C = [1 0 1 ; 0 2 3 ; 4 5 0];A + C = A + CBA = B * AdetA = det(A)traceA = trace(A)BT = B'invA = inv(A)rankA = rank(A)[EigenVectors, EigenValues] = eig(A)
Matlab
7
2024-11-06
Basic Operations and Matrix Input(Class One).m
Basic Operations and Matrix Input (class one).m
Matlab
5
2024-11-05
MATLAB_Basic_Manual_for_Programming_And_Simulink_Introduction
MATLAB基础讲义,涵盖数学建模和Simulink基础等内容。适用于初学者和有一定基础的学习者。通过本讲义,您将了解如何使用MATLAB进行数值计算、数据可视化、以及Simulink模型设计的基本方法,提升数学建模能力和系统仿真技能。
Matlab
9
2024-11-06
Bi-LSTM MATLAB Code and Data Science Notes Deep Learning,Machine Learning,and More
Bi-LSTM MATLAB Code – DataScience-Notes 数据科学笔记。提供有关数据科学的笔记、代码和实例,涵盖数学、统计、机器学习、深度学习等基础知识及相关应用场景。参考资料已在最后列出。大部分代码采用Python编写,涉及的库及框架包括: NumPy、SymPy、Scikit-learn、Gensim、TensorFlow 1.X、TensorFlow 2.X 和 MXNet。部分数值分析代码则使用MATLAB编写。
注释:- (notebook): Jupyter Notebook 文件链接- (MATLAB): 相应的 MATLAB 代码链接- (md): M
Matlab
8
2024-11-05
Detecting Single Information Bit in Noise Ocean Using Deep Learning Matlab Implementation
概述
本示例展示了如何使用卷积神经网络(CNN)快速检测在噪声海洋中的单个信息位。生成一个指定大小的随机矩阵,并在矩阵的一个位置将其中一半像素设置为true,另一半设置为false。然后,使用CNN进行矩阵分类,将矩阵分为两类('class 1' 和 'class 2')。
CNN训练与检测
通过深度学习模型训练,我们能够快速识别并定位矩阵中的单个信息位位置。与传统机器学习算法相比,CNN在这种任务中的收敛速度要快得多,且具有强大的处理能力。
应用场景
这种方法不仅适用于矩阵,也可以推广到其他数据形式,如基因组数据中的单核苷酸变异(SNPs)或财务数据中的欺诈交易。该方法为高效分类和信息位检测
Matlab
5
2024-11-05
Matlab-Based Open Image Restoration Toolkit Latest Deep Learning Techniques for Image Restoration
该项目收集并打包了遵循各种标准的图像恢复技术,包括最新技术(都基于深度学习),开源技术(MIT或Apache许可证),可用技术(可直接使用预训练模型且不需要复杂依赖),以及Pythonic技术(更易于与Google Colab等平台共享和使用)。截至2019年7月25日,NLRN和ESRGAN是多个排行榜的领导者(可参考paperswithcode.com)。
技术细节:当前软件包包含的算法既可以直接使用,也可以根据需求从外部GitHub存储库稍作改编。所选方法依据以下标准进行比较:
去噪(去除颗粒) - 刘等,2018年提出的非本地循环网络(NLRN)。MIT许可证。
去除波纹(去除条纹噪
Matlab
5
2024-11-05