ndarray-basic-operations-introduction-to-deep-learning-frameworks
NDArray基本操作对NDArray的基本数学运算是元素粒度的:
# 创建两个全为1的NDArray
a = mx.nd.ones((2,3))
b = mx.nd.ones((2,3))
# 元素级加法
c = a + b
# 元素级减法
d = -c
# 元素级幂和正弦运算,然后转置
e = mx.nd.sin(c**2).T
# 元素级最大值
f = mx.nd.maximum(a, c)
f.asnumpy()
算法与数据结构
6
2024-10-31
Bi-LSTM MATLAB Code and Data Science Notes Deep Learning,Machine Learning,and More
Bi-LSTM MATLAB Code – DataScience-Notes 数据科学笔记。提供有关数据科学的笔记、代码和实例,涵盖数学、统计、机器学习、深度学习等基础知识及相关应用场景。参考资料已在最后列出。大部分代码采用Python编写,涉及的库及框架包括: NumPy、SymPy、Scikit-learn、Gensim、TensorFlow 1.X、TensorFlow 2.X 和 MXNet。部分数值分析代码则使用MATLAB编写。
注释:- (notebook): Jupyter Notebook 文件链接- (MATLAB): 相应的 MATLAB 代码链接- (md): M
Matlab
8
2024-11-05
Learning SQL 2nd Edition Master SQL Fundamentals
Updated for the latest database management systems -- including MySQL 6.0, Oracle 11g, and Microsoft's SQL Server 2008 -- this introductory guide will get you up and running with SQL quickly. Whether you need to write database applications, perform administrative tasks, or generate reports, Learning
Oracle
4
2024-11-05
Detecting Single Information Bit in Noise Ocean Using Deep Learning Matlab Implementation
概述
本示例展示了如何使用卷积神经网络(CNN)快速检测在噪声海洋中的单个信息位。生成一个指定大小的随机矩阵,并在矩阵的一个位置将其中一半像素设置为true,另一半设置为false。然后,使用CNN进行矩阵分类,将矩阵分为两类('class 1' 和 'class 2')。
CNN训练与检测
通过深度学习模型训练,我们能够快速识别并定位矩阵中的单个信息位位置。与传统机器学习算法相比,CNN在这种任务中的收敛速度要快得多,且具有强大的处理能力。
应用场景
这种方法不仅适用于矩阵,也可以推广到其他数据形式,如基因组数据中的单核苷酸变异(SNPs)或财务数据中的欺诈交易。该方法为高效分类和信息位检测
Matlab
5
2024-11-05
Matlab-Based Open Image Restoration Toolkit Latest Deep Learning Techniques for Image Restoration
该项目收集并打包了遵循各种标准的图像恢复技术,包括最新技术(都基于深度学习),开源技术(MIT或Apache许可证),可用技术(可直接使用预训练模型且不需要复杂依赖),以及Pythonic技术(更易于与Google Colab等平台共享和使用)。截至2019年7月25日,NLRN和ESRGAN是多个排行榜的领导者(可参考paperswithcode.com)。
技术细节:当前软件包包含的算法既可以直接使用,也可以根据需求从外部GitHub存储库稍作改编。所选方法依据以下标准进行比较:
去噪(去除颗粒) - 刘等,2018年提出的非本地循环网络(NLRN)。MIT许可证。
去除波纹(去除条纹噪
Matlab
5
2024-11-05
MATLAB Image Overlay Code-HumanSeg_Surveillance Deep Learning-Based Human Segmentation in Surveillance Videos
本项目包含用于带深度学习的监控视频中的人体分割的官方培训和测试代码(多媒体工具和应用程序,2020年)。请参阅技术细节,视频演示已提供。该实现基于MATLAB R2018a构建,因此需要安装深度学习工具箱。请注意,本教程假定您的根文件夹为/human-segmentation/,如使用其他目录,请相应修改命令。
文件结构
您的文件结构应如下所示:/human-segmentation/dataset/imageDataset/train/test/val/pixelLabelDataset/train/test/val/myColorMap.mpixelLabelColorbar.mprepr
Matlab
4
2024-11-06
Cognitive Radio Technology Development Trends and Research Status
概述
探讨认知无线电技术(Cognitive Radio Technology, CRT)的国际国内发展现状及其研究趋势。通过对2000年至2020年间所有关于CRT的文章进行统计分析,并以表格的形式展现,该文深入分析了CRT的总体研究情况、系统结构设计、频谱感知、频谱决策、频谱共享、频谱切换等方面的研究进展,并对现有研究成果、未来研究方向及存在的问题进行了综合性的总结和展望。
系统结构设计
集中式结构:早期广泛采用,中心节点管理控制,灵活性差。
分布式结构:逐渐重视,节点自主决策,增强适应性。
混合结构:结合集中与分布优势,成为研究热点。
频谱感知
基本原理:关键技术之一,用于检测未使
统计分析
9
2024-10-31
Database Design Fundamentals
This ebook provides a foundational understanding of database design principles. Geared towards beginners, it explores core concepts using accessible language and practical examples. Readers will gain insights into data modeling, relational databases, and best practices for building efficient and sca
MySQL
8
2024-05-31
Database Fundamentals Overview
数据库基础知识
概述
数据库是用于组织、存储和处理数据的电子系统,是现代信息系统的基础。帮助读者理解数据库的基本概念,并掌握SQL语法规范,从而更好地进行数据库的操作与管理。
数据库概念设计
在设计数据库之前,我们需要对系统的需求进行深入分析。基于这些需求,我们可以规划出系统所需的各种实体及其关系。以下是关于一个水电管理系统的数据库概念设计示例。
1. 实体与属性
(1)水电表信息实体- 楼号:表示建筑物编号。- 房间号:表示具体房间的编号。- 电表本月读数:本月电表的读数。- 电表上月读数:上个月电表的读数。- 水表本月读数:本月水表的读数。- 水表上月读数:上个月水表的读数。- 抄表日期:
SQLServer
11
2024-11-02