这个存储库包含了与MatteoFarnè和Angela Montanari合作的手稿“中等尖峰状态下的大型协方差矩阵估算器”相关的数据和代码。MATLAB数据集“supervisory_data.m”包含协方差矩阵和欧元区银行业监管数据的相关标签。由于保密要求,无法提供详细数据集标点。数据集包含名为“C”的协方差矩阵以及有关监督指标的相关标签“Labgood”。此外,还提供了两个MATLAB函数:“UNALCE.m”和“POET.m”。前者实施了新的协方差矩阵估算过程UNALCE(非缩水代数协方差估算器),而后者执行了POET协方差矩阵估算程序(Fan等人,2013)。这两个函数均包含详细的输入和输出参数说明。
Matlab代码保密中尖峰条件下的大型协方差矩阵估算器
相关推荐
协方差矩阵的计算与分析
根据题意,我们首先计算了随机变量 X 和 Y 的期望值:$$E(X) = frac{1}{18}, quad E(Y) = frac{5}{3}$$接着,分别计算 X 和 Y 的方差:$$Var(X) = E(X^2) - [E(X)]^2 = frac{1}{3} - (frac{1}{18})^2 = frac{107}{324}$$$$Var(Y) = E(Y^2) - [E(Y)]^2 = frac{80}{9} - (frac{5}{3})^2 = frac{35}{9}$$最后,计算 X 和 Y 的协方差:$$Cov(X,Y) = E(XY) - E(X)E(Y) = frac{1}{4} - frac{1}{18} cdot frac{5}{3} = 0$$因此,我们可以得到协方差矩阵为:$$D = begin{bmatrix} frac{107}{324} & 0 0 & frac{35}{9} end{bmatrix}$$
算法与数据结构
4
2024-04-30
优化协方差矩阵转换为相关矩阵在MATLAB开发中重新定义
这个函数重新定义了原生MATLAB的cov2corr()函数,生成相关矩阵,保证了主对角线上的元素接近于1。然而,它目前不能满足各种进一步计算的需求,比如在squareform()函数中的应用。解决这一问题的方法可以是将所有对角线元素简单设为1(非正常方法),或者在计算相关矩阵时使用方差而不是标准差,即用covariance(x,y)/sqrt(var(x)var(y))来代替协方差(x,y)/(std(x)std(y))。
Matlab
0
2024-08-29
天气条件下的活动决策熵
在已知天气条件下,活动的不确定性可以通过条件熵来衡量。具体而言,活动在天气条件下的条件熵 H(活动|天气) 可以通过如下公式计算:
H(活动|天气) = ∑ p(天气) * H(活动|天气)
其中 p(天气) 表示特定天气条件出现的概率,H(活动|天气) 表示在该天气条件下活动的熵。
例如,根据给定的数据,我们可以计算出 H(活动|天气) = (5/14)0.971 + (4/14)0 +(5/14)*0.971 = 0.693。
这意味着,在已知天气条件的情况下,活动的决策仍然存在一定程度的不确定性。
算法与数据结构
6
2024-05-19
改进Matlab条件下的自适应中值滤波技术
在Matlab环境下,通过改进条件下的中值滤波算法,实现了更为精准和高效的自适应中值滤波。该方法在处理复杂图像时表现出色。
Matlab
1
2024-07-22
协方差函数在Matlab中的广泛应用
3.变异分析(1)协方差函数,又称半方差,用于衡量两随机变量之间的差异。在概率论中,随机变量X与Y的协方差定义为: )]Y())(X((),( EYEXEYXCov −−= (10.2)。在地统计学中,协方差函数表示为: ∑ = +−+−= )( 1 )()][()([ )( 1 )( hN i iiii hxZxZxZhN hC (10.3)。这里,Z(x)是区域化随机变量,满足二阶平稳假设,即其空间分布不因位移改变;h为两样本点的空间分隔距离;为Z(x)在空间点处的样本值;)( ixZ ix 2
Matlab
0
2024-08-24
多元统计分析:矩、协方差矩阵的性质
协方差矩阵的性质:
对角线元素为方差:主对角线元素 Cii 等于变量 Xi 的方差。
对称性:Cij = Cji,这意味着协方差矩阵是对称的。
非负定性:对于任何实向量 t,t'Ct ≥ 0,表明协方差矩阵是非负定的。
统计分析
4
2024-04-30
计算平均向量、协方差、偏斜度和峰度矩阵 - MATLAB开发
输入: -TxN矩阵包含N个资产回报的多元时间序列。 -select:虚拟变量,若为1,则算法采用指数平滑,使用GARCH(1,1)模型。 -lambda:指数平滑参数 输出: -mean_ser:Nx1均值向量 -varcov:NxN协方差矩阵 -coskewness:NxN^2偏斜度矩阵 -cokurtosis:NxN^3峰度矩阵
Matlab
2
2024-07-26
方差未知条件下两个正态分布总体均值差异的检验方法-MATLAB学习资源
在方差未知的情况下,利用MATLAB的ttest2函数对两个样本的均值差异进行了检验。
Matlab
0
2024-09-16
MATLAB代码缺失的协议:SwiftCMA:协方差矩阵自适应进化策略(CMA-ES)的纯粹快速实现
SwiftCMA是协方差矩阵自适应进化策略(CMA-ES)算法在Swift中的完整实现。它支持任意高维的求解空间,采用了(mu/mu,lambda)-CMA-ES类型,具有加权的mu级更新。CMA-ES的主要对象提供两种略有不同的epoch()方法。您可以提供一个闭包,该闭包采用候选解向量数组并返回相应目标函数值的数组,让您的代码能够同时计算目标函数。
Matlab
3
2024-05-25