最新实例
基于WOE-Probit逐步回归的用户跨域行为挖掘系统设计
为完整掌握电力供应网络中用户节点的跨域调度行为,设计了基于WOE-Probit逐步回归的用户跨域行为模式挖掘系统。系统按照数据挖掘框架的结构类型,连接用户行为处理单元与信息存储模块,完成挖掘系统的硬件执行环境设计。基于跨域行为数据的归类原理,系统提取电网环境中的用户跨域行为指标,并构建逐步回归模型,实现系统的软件执行环境。结合硬件执行结构,完成整体挖掘系统设计。实验结果表明,相比传统BIC系统,新系统显著加快了用户节点数据调度频率,单位时间内跨越供应总量超9.3×10^14 T,实现了核心控制主机对电力网络用户跨域调度行为的实时监控。**
数据挖掘
7
2024-10-30
构建三维模型的线上会员客户价值分析
基于新三维客户细分模型的线上会员客户价值研究
在互联网环境下,企业需要更加精细的客户价值评估方法。提出了一个从客户的当前价值、潜在价值和忠诚度价值三个维度出发的会员客户价值评价指标体系,帮助线上企业深入了解客户需求。
一、客户价值评价指标体系1. 当前价值指标- 购物价值:包括购物总次数和总金额,衡量客户近期的消费活跃度。- 会员卡积分价值:积累的积分反映了客户的持续参与程度。
潜在价值指标
预期购买力:基于历史数据预测未来购买潜力。
购物频率趋势:分析购物频率变化,评估客户行为的稳定性。
忠诚度价值指标
会员等级:根据消费和活动情况分级,衡量忠诚度。
重复购买率:反映客户的粘性和再
数据挖掘
8
2024-10-30
互联网与大数据研究技术、应用与安全性解析
互联网与大数据研究领域所涵盖的知识点非常广泛,不仅涉及技术层面,还包括商业策略、数据分析、机器学习等多个方面。在大数据的研究中,一个主要的目的是从大量的数据中挖掘出有价值的信息,而互联网为大数据提供了一个几乎无限的数据来源。物联网(IoT)作为互联网的延伸,使得日常生活中的各种设备都能够联网,进而产生了海量的数据。如何利用大数据挖掘技术来解决物联网中的实际问题,正是本领域研究的重点之一。大数据技术的发展与互联网紧密相连。互联网提供了庞大的数据集合,包括各种用户生成的内容、商业交易记录、设备日志以及传感器收集的数据等。这些数据类型多样,包括结构化、半结构化和非结构化数据,具有体量大(Volume
数据挖掘
4
2024-10-30
Audio-Data-Mining将音频文件分类为音乐或语音
在IT领域,音频数据挖掘是一项重要的技术,它涉及对声音信号的分析、处理和理解,以便从中提取有价值的信息。这个项目专注于将声音文件分类为音乐或语音。这是一项基础但关键的任务,在语音识别、音乐推荐系统、智能设备交互等领域广泛应用。
我们首先需要了解音频信号的基本特性。声音是一种机械波,可以通过转换为电信号进行数字化处理。在计算机中,音频文件通常以采样率、位深度和声道数等参数表示。例如,CD质量的音频为44.1kHz采样率、16位深度和双声道(立体声)。
为了实现音乐与语音分类,首先需进行音频数据的预处理。Python提供了许多库支持音频处理,如librosa、soundfile和wave等。这些库
数据挖掘
8
2024-10-30
Linux版数据库设计利器PDManerv4.1.1详解
PDManerv4.1.1是一款专为数据挖掘领域设计的数据库表结构设计软件。作为PowerDesign的完美替代品,PDManerv在功能上无缝对接数据库设计需求,支持Windows、Linux和Mac三大系统平台,满足不同开发者的操作习惯。该软件的界面简单直观,使用体验极佳,是一款值得推荐的国货之光。重要的是,PDManerv完全免费,无需担心破解问题,使数据库设计更加便捷与合法化。
数据挖掘
6
2024-10-30
DataMining常用数据挖掘算法详解
数据挖掘 是从海量数据中提取有价值知识的过程,它利用各种算法和统计技术揭示隐藏在数据中的模式、关联和趋势。在本项目“DataMining:一些数据挖掘算法”中,我们涵盖了几种常用的数据挖掘方法:埃克拉特算法(Eclat)、FP增长(FP-Growth)、多路阵列和贝壳碎片算法。这些算法广泛应用于频繁项集挖掘和分类,成为数据挖掘领域的重要工具。
1. 埃克拉特算法(Eclat)
Eclat是“Exact Clustering using a Level Traversal”(精确层次遍历聚类)的缩写,是一种基于垂直数据表示的频繁项集挖掘算法。它通过扫描数据库并计算支持度来识别频繁项集,适用于大规
数据挖掘
7
2024-10-30
农产品价格数据的预测与建模应用详解
本篇内容为大家介绍一万条农产品数据,这些数据包括以下字段:品名、最低价、最高价、平均价、规格、产地、单位、发布日期。这些数据可以用作模型预测和数据建模的应用场景。利用这些数据,可以对农产品价格趋势进行有效分析,提升预测的精准度。每个字段对于理解农产品市场动态和进行数据建模都有着重要的意义。
数据挖掘
5
2024-10-30
数据挖掘入门秘籍快速掌握数据分析技能
在本篇 数据挖掘入门 指南中,我们将带您深入了解数据挖掘的基本概念和核心步骤。数据挖掘 是从大量数据中提取有价值信息的过程,广泛应用于各个行业。通过学习数据挖掘,您将掌握如何分析、清洗、转换数据,最终获得洞察。以下是数据挖掘的主要流程:
数据预处理:确保数据质量,包括数据清洗和数据整合。
数据分析与建模:应用算法找到数据的模式和关系。
结果评估与解读:确保模型效果,并得出有用结论。
应用与优化:将结果应用到实际业务中,不断优化。
通过掌握这些流程,您将更好地理解数据挖掘的核心步骤,并能运用数据挖掘技能为实际问题提供有效的解决方案。
数据挖掘
6
2024-10-30
Matminer用于材料科学的数据挖掘工具库
Matminer 是一个用于在材料科学领域进行数据挖掘的库,提供了丰富的功能和灵活的工具来处理材料数据。以下是一些关键信息:
网站(包括文档):用户可以在官方网站上获取详细的文档和使用指南,帮助新用户快速上手。
范例:Matminer 提供了许多示例代码,用户可以直接应用于数据挖掘任务,以加速研究进程。
帮助/支持:社区和开发团队提供支持,用户可以通过讨论区或邮件列表获得帮助。
资料来源:matminer 提供了丰富的资料来源和数据集,涵盖不同材料属性和研究方向。
如果您发现 matminer 有用,请在您的研究中引用以下论文来鼓励其发展:
Ward, L., Dunn, A., Fagh
数据挖掘
4
2024-10-30
Data-Mining-and-Knowledge-Discovery-Handbook-Overview
Data Mining and Knowledge Discovery Handbook is a comprehensive guide that explores data mining and knowledge discovery techniques. The book, titled Data Mining and Knowledge Discovery Handbook数据挖掘与知识发现, delves into various methodologies and applications, offering insights into extracting patterns f
数据挖掘
5
2024-10-30