最新实例
典型互联网大数据应用技术体系-大数据平台之用户行为分析平台
典型互联网大数据应用技术体系包含数据存储、计算规则、业务处理等技术模块。数据采集使用高效、智能的方法,数据仓库通过ETL技术实现高效存储和处理。实时计算和大数据存储技术确保数据的快速处理与存储。大数据计算技术和机器学习关键技术用于深度分析,数据分析与可视化技术帮助用户直观理解数据结果,数据共享技术则促进了数据的广泛应用。
Hive
8
2024-07-12
Hive通过Excel生成建表语句
根据Excel中的字段列表,批量生成Hive建表语句。打开工具后,按照格式填入表名、字段、类型等内容,然后依次点击“视图”→“宏”→“查看宏”→“执行”。
Hive
8
2024-07-12
Sqoop入门指南:hive & sqoop
Sqoop是一款开源工具,主要用于在Hadoop和关系数据库之间传输数据。通过Sqoop,用户可以将关系数据库中的数据导入到Hadoop的HDFS中,也可以将HDFS中的数据导出到关系数据库中,支持的数据库包括MySQL、PostgreSQL、Oracle等。使用Sqoop时,只需指定相应的连接信息和数据传输参数,操作简单方便。重点介绍如何在Hive中使用Sqoop,实现数据的高效传输和管理。
Hive
12
2024-07-12
Apache Hive事务操作及未来发展
Apache Hive是基于Hadoop的数据仓库工具,支持大规模数据的存储、查询和分析。随着大数据时代的到来,事务操作设计变得愈发重要。详细介绍Apache Hive的事务操作设计及其未来发展方向。\
一、历史背景
在早期的Apache Hive中,缺乏事务操作,所有操作基于文件系统的rename实现,但这种方式存在无法实现isolation和consistency等问题。为了满足用户需求,Apache Hive设计了新的事务操作方案。\
二、当前功能
目前,Apache Hive支持插入操作和动态分区写入操作。插入操作使用INSERT INTO语句实现,而动态分区写入操作使用MULTITA
Hive
7
2024-07-12
mysql-connector-java-5.1.27-bin.zip
将mysql-connector-java-5.1.27-bin.zip和mysql-connector-java-5.1.27-bin.jar复制到Hive安装目录的lib文件夹下,以便Hive支持MySQL。
Hive
10
2024-07-12
yanagishima-20.0.zip(已编译)
presto web客户端,v20.0版本,经过实际测试,功能正常运行。
Hive
7
2024-07-12
高薪训练营:互联网程序开发与大数据课程
lg大数据高薪训练营涵盖HBase、Java9、Java10、MySQL优化、JVM原理、JUC多线程、CDH版Hadoop、Impala、Flume、Sqoop、Azkaban、Oozie、HUE、Kettle、Kylin、Spark、Mllib机器学习、Flink、Python、SpringBoot、Hadoop3.x新特性、ClickHouse、Kudu、Presto、Druid、Ambari、DataX、Logstash、Kibana。数据结构与Scala基础入门、函数式编程、面向对象编程、模式匹配、高阶函数、特质、注解与类型参数、隐式转换、高级类型以及案例实操。Spark Core部
Hive
9
2024-07-12
Hive教程.docx
Apache Hive是一款基于Hadoop的数据仓库工具,简化对存储在分布式文件系统中的大量数据的查询和分析。Hive提供了一种类似SQL的查询语言,称为HiveQL,使熟悉SQL的用户无需编写MapReduce代码即可处理大数据。HiveQL被编译成MapReduce任务,在Hadoop集群上执行,从而处理和分析数据。Hive最初由Facebook开发,以应对数据量急剧增长的挑战,解决了MapReduce编程复杂性的问题,允许使用类似SQL的语法进行数据查询,降低了开发难度。Hive的主要特点是易用性、扩展性和稳定性。通过Metastore管理数据的元信息,这些信息存储在关系数据库中,并支
Hive
7
2024-07-12
Hive数据仓库技术指南
本指南提供对Hive数据仓库技术的全面理解,涵盖其核心概念、架构和实际应用。
核心概念
数据仓库:Hive作为数据仓库解决方案,用于存储和分析海量结构化和半结构化数据。
表:Hive中的表类似于关系数据库中的表,用于组织和查询数据。
分区:分区是将表水平划分为更小的逻辑单元,以提高查询性能。
架构
HiveQL:Hive使用类似SQL的查询语言HiveQL,用户可以使用熟悉的语法进行数据操作。
元数据存储:Hive将表的元数据(如架构、位置等)存储在关系数据库(如MySQL)中。
执行引擎:Hive支持多种执行引擎,包括MapReduce、Tez和Spark,以处理不同类型的查询。
实
Hive
12
2024-07-01
Hive Join 优化策略
在 Hive 中进行 Join 操作时,遵循以下策略可以有效提升查询性能:
1. 小表 Join 大表:
将包含记录数较少的表或子查询放置在 Join 操作符的左侧。这是由于在 Join 操作的 Reduce 阶段,左侧表的内容会被加载到内存中进行匹配。使用较小的左侧表可以有效降低内存溢出的风险,提升查询效率。
2. Join 操作合并:
当多个 Join 操作涉及的表共享相同的 Join Key 时, Hive 会自动将这些 Join 操作合并到一个 MapReduce 任务中执行,从而减少数据 shuffle 和排序的开销。
Hive
7
2024-07-01