无人驾驶

当前话题为您枚举了最新的无人驾驶。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

无人驾驶汽车工程师纳米学位课程数据融合Matlab代码项目
在无人驾驶汽车工程师纳米学位课程中,涉及数据融合Matlab代码的项目,重点是扩展卡尔曼滤波器和传感器融合。操作系统要求包括CMake版本不低于3.5,对于Linux和苹果电脑,推荐使用GCC / G++版本不低于5.4。Windows用户则建议通过安装Xcode命令行工具来配置编译环境。项目构建和运行步骤包括克隆存储库,创建构建目录,进行CMake编译,并执行输出文件的生成。数据文件示例位于“数据/”目录下。
数据融合matlab代码-CarND-Extended-Kalman-Filter无人驾驶汽车纳米学位课程项目1概述
在这个项目中,使用卡尔曼滤波器估算感兴趣的运动对象状态,并使用嘈杂的激光雷达和雷达测量。 Udacity提供的模拟器(可下载)生成嘈杂的RADAR和LIDAR测量对象的位置和速度,扩展卡尔曼滤波器必须融合这些测量值以预测对象位置。存储库包含两个文件,用于Linux或Mac系统安装。对于Windows,可以使用Docker,VMware或安装uWebSocketIO。执行指定操作构建和运行主程序。
车载驾驶人?
恕我无法理解您提供的文本
优选+DATA-驾驶模拟器
(8)优选+DATA (9)输入ASM密码(Nortek123)
MATLAB多无人机路径规划代码多无人机区域覆盖任务的论文研究
这是一个MATLAB代码,用于多无人机协同进行区域覆盖任务的路径规划。该算法的概念在相关论文中有详细阐述。使用的软件包括MATLAB、YALMIP和Gurobi(可选)。
自主驾驶模拟框架设计和仿真
基于 MATLAB,开发了自主驾驶模拟框架,用于仿真 MCity 自主联网车辆的驾驶策略。
道路安全驾驶预警系统 DSA 简介
电子狗 DSA 通过预警播报为机动车驾驶员提供道路安全驾驶信息,帮助驾驶员避免罚款。
VINS系统自动驾驶的革新导航
VINS系统以多传感器融合为核心,包括相机(单目或双目)和IMU,显著提升了系统的稳健性和准确性。它具备实时处理视觉和惯性数据的能力,适用于动态环境,并在视觉信息稀缺时仍能保持高精度定位。系统支持自动初始化,无需外部干预,并能够在线校准相机和IMU的空间和时间关系。闭环检测功能使其能够检测循环回路并进行优化,同时进行全局位姿图优化以进一步提高定位的准确性和一致性。
无人值守称重系统的地磅记录工具
无人值守称重系统使用的地磅台账,用于记录各种称重数据,确保数据的准确性和完整性。这种工具能够自动记录和存储称重信息,有效简化了操作流程和数据管理。
BaiduApollo无人车传感器安装指南
读取指标数据的Q&A:Windmatlab如何读取数据?在使用Windmatlab读取数据之前,务必运行以下代码: >> w=windmatlab菜单向导如下。 >>w.menu Windmatlab通过以下5个函数实现数据读取: w.wsd用于获取历史序列数据,包括日内行情、基本面数据和技术数据指标;w.wss用于检索股票、债券、商品等的基本面静态数据;w.wst提供盘口买卖十档快照数据和分时成交数据;w.wsi则负责分钟级历史及当天行情数据的读取。