time series prediction
当前话题为您枚举了最新的 time series prediction。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Chaos Time Series Toolbox Comprehensive MATLAB Programs for Analysis and Prediction
This Chaos Time Series Toolbox includes a variety of MATLAB programs for analyzing chaotic time series. The toolbox features methods for calculating delay time, embedding dimension, and various prediction techniques. The provided code is fully functional and ready to run, ensuring an effective and reliable approach to chaotic data analysis.
Matlab
0
2024-11-06
Top NoSQL Time Series Databases Overview
Time Series Database (TSDB) is a database system specifically designed for efficiently storing, managing, and processing time series data. This type of data typically involves numerical values associated with specific timestamps, commonly found in monitoring, IoT, financial transactions, and operational analytics. This article explores several key NoSQL time series databases, including InfluxDB, ScyllaDB, CrateDB, and Riak TS, as well as Apache Druid, highlighting their characteristics and application scenarios.
1. InfluxDB
InfluxDB, developed by InfluxData, is an open-source time series database designed for real-time analysis and big data. It features high write performance and low-latency query capabilities, supporting complex time series data queries. InfluxDB is particularly suited for handling data from sensors, logs, metrics, and is widely used in monitoring systems, IoT applications, and real-time analysis scenarios.
2. ScyllaDB
ScyllaDB is a high-performance distributed database based on Apache Cassandra. It offers higher throughput and lower latency than native Cassandra. Its optimized time series data processing capabilities make it ideal for real-time applications such as monitoring and log analysis. ScyllaDB supports multi-data center deployments to ensure high availability and consistency of data.
3. CrateDB
CrateDB is a column-oriented distributed SQL database that can handle large-scale time series data. It provides a SQL interface, making time series data operations more familiar to traditional database users. CrateDB is suitable for projects that require rapid analysis of large amounts of time series data and prefer using SQL for querying.
4. Riak TS
Developed by Basho Technologies, Riak TS is a NoSQL solution focused on time series data. It inherits the core features of Riak, such as high availability and scalability. Riak TS is suitable for applications that need to store and retrieve time series data in a distributed environment, such as recording equipment status in the telecommunications or energy industries.
5. Apache Druid
Although Druid is not a traditional NoSQL database, it is a columnar data store designed for real-time analytics. Druid is renowned for its excellent Online Analytical Processing (OLAP) performance and low-latency query capabilities, making it suitable for big data real-time analysis and business intelligence applications.
These databases each have their strengths. InfluxDB and Druid excel in real-time analytics, ScyllaDB and CrateDB offer powerful distributed processing capabilities, while Riak TS specializes in distributed storage and retrieval. Developers should consider data scale, performance requirements, query complexity, SQL support, and team expertise when choosing a solution.
NoSQL
0
2024-10-30
Acycle Time Series Analysis Software for Research and Education
Acycle: Acycle是一个用于研究和教育的时间序列分析软件,提供强大的分析工具和用户友好的界面,适合学术研究和教学使用。
Matlab
0
2024-11-03
Fill Missing Data in Time Series Using NaN in MATLAB
该代码有助于填补时间序列数据中的空白。为此,它需要一个缺少日期和时间的 DateTime 数组以及具有相应缺失值的 测量数组。它将检查日期数组中缺少的日期,并为测量数组中的相应日期填充 NaN,这将有助于获取连续的时间序列数据。
Matlab
0
2024-11-03
Finding Main Harmonics in Time Series Data with Periods Function
Periods是一个函数,其目的是找到时间序列数据的主要谐波分量。该函数获取时间序列中主要谐波分量的周期、幅度和滞后相位。它基于循环下降的周期性回归方法,包括统计显著性检验。上述功能非常易于使用,并不需要用户完全理解时间序列理论或大量输入,但足够灵活以承担更复杂的任务,例如预测。此外,根据先前的知识,可以轻松地包括或排除特定时期。González-Rodríguez, E.等人提供了有关如何使用该功能的参考资料和更详细的信息;(2015)时间序列中周期的提取和建模的计算方法。开放统计杂志,5, 604-617。http://dx.doi.org/10.4236/ojs.2015.56062。Periods在MATLAB 2013a版本及后续版本上进行了测试。任何问题/意见都可以通过电子邮件发送至egonzale@cice
Matlab
0
2024-11-04
Iterative Amplitude-adjusted Wavelet Transform for Time Series Randomization
给定时间序列,该算法生成随机变体,其中原始值都被保留(但它们的位置是随机的),但逐点Holder结构是固定的。这对于各种形式的假设检验很有用。参考文献:Keylock, CJ 2017. 保留逐点的多重分形代理数据生成算法Hölder规律结构,初步应用于湍流,Physical Review E 95, 032123,https://doi.org/10.1103/PhysRevE.95.032123。
Matlab
0
2024-11-04
MATLAB Code for Cross Sectional Area Analysis from Time Series Data in Excel
This MATLAB code imports time-series data related to riverbank and water depth coordinates in XY format, sampled every 10 minutes. The code calculates the cross-sectional area for each water depth and writes the following data to an Excel file: Date/Time, Water Depth, and the cross-sectional area for each water depth.
Matlab
0
2024-11-06
MATLAB Code for Traffic Impact Prediction Real-Time Traffic Accident Impact Forecasting
The MATLAB code provided here enables the real-time traffic accident impact prediction for both short-term and long-term traffic conditions in Los Angeles. The dataset is sourced from the LADOT (Los Angeles Department of Transportation). The algorithm used is a slight modification of the Collaborative Contextual Bandit Strategy Algorithm, which is based on the idea that when various traffic sensors share information and predict data from other sensors when necessary, the prediction accuracy improves. Disclaimer: Traffic impact prediction uses JxBrowser, which is proprietary software. Use of JxBrowser is subject to the JxBrowser Product License Agreement. For usage in development, contact TeamDev for licensing inquiries.
Matlab
0
2024-11-06
DeepLearning_for_StockMarket_Prediction
深度学习在股市预测方面的应用是一个复杂而多元的研究课题,涉及到机器学习、金融工程以及数据科学等多个领域。韩国股价数据作为研究对象,选择深度学习方法进行分析和预测,主要是因为深度学习技术在处理非结构化数据方面具有显著优势。深度学习能够自动从大量原始数据中提取特征,而无需依赖预测因子的先验知识。这一点对于股市预测尤为重要,因为股市数据通常是非线性的、含有噪声的,并且有着复杂的动态特征。深度学习算法在选择网络结构、激活函数和其他模型参数方面存在较大的变化空间,其性能明显依赖于数据表示方法。
本研究尝试提供一个全面和客观的评估,以探讨深度学习算法在股票市场分析和预测方面的优缺点。实验使用了高频的日内股票回报率作为输入数据,检验了三种无监督特征提取方法——主成分分析(PCA)、自编码器(Autoencoder)和受限玻尔兹曼机(Restricted Boltzmann Machine)——对网络整体预测未来市场行为能力的影响。研究结果显示,深度神经网络能够从自回归模型的残差中提取额外的信息,并改善预测性能;但当自回归模型应用于网络的残差时,情况则不同。此外,当预测网络应用于基于协方差的市场结构分析时,协方差估计也显著改善。这表明深度学习网络在股票市场分析中具有潜在的优势。
关键词“Stockmarketprediction”(股票市场预测)和“Deeplearning”(深度学习)揭示了这一研究的核心内容。深度学习在股票市场预测中的应用,不仅仅局限于使用单一的深度学习模型,还包括了对多种模型的比较研究。例如,就提到将深度学习网络与AR(10)模型进行了对比。AR模型是时间序列预测中常用的自回归模型,通过先前时间点的观测值来预测未来值。中提到的AR(10)指的就是一个阶数为10的自回归模型。
在“Methodology”(方法论)方面,研究者们详细讨论了数据表示方法对深度学习算法性能的影响。不同的数据表示方法可能影响模型学习数据特征的方式,进而影响预测的准确度。这一点在深度学习模型的设计和训练过程中至关重要。此外,还提到了“Multilayerneuralnetwork”(多层神经网络)。多层神经网络是深度学习中的一种基础结构,它通过叠加多个非线性处理层,使得网络能够学习和表示更为复杂的数据特征。在股票市场预测中,多层神经网络的使用有利于捕捉股价变动的内在规律,这对于提高预测精度具有重要意义。
算法与数据结构
0
2024-11-07
Reverb Time Calculator Estimating Reverberation Time from Multiple Microphone Records Using Time Log-MATLAB Development
The rt_script.m is the main program. It generates a text file and a PDF report to log the estimated reverberation time. Two measurement methods can be used: 1) Speaker On-Speaker Off Method, and 2) Balloon Burst Method. The documentation provides basic programs for both methods. It has been found that the Speaker On-Speaker Off Method is significantly more accurate than the Balloon Burst Method. The Balloon Burst Method tends to have over 50% error below 1000 Hz. The reverb_time.m calculates the reverberation time from the 1/3 octave band time logs. Time records of random test signals, generated by the script makelNHANESNoisesm_ed.m (also available on MATLAB Central File Exchange), are ideal for measuring reverberation time using the Speaker On-Speaker Off Method. The Balloon Burst Method can be used to process the same file multiple times to roughly estimate the reverberation time for each 1/3 octave band.
Matlab
0
2024-11-05