给定时间序列,该算法生成随机变体,其中原始值都被保留(但它们的位置是随机的),但逐点Holder结构是固定的。这对于各种形式的假设检验很有用。参考文献:Keylock, CJ 2017. 保留逐点的多重分形代理数据生成算法Hölder规律结构,初步应用于湍流,Physical Review E 95, 032123,https://doi.org/10.1103/PhysRevE.95.032123。
Iterative Amplitude-adjusted Wavelet Transform for Time Series Randomization
相关推荐
MATLAB_Wavelet_Transform_Implementation
影像融合,小波变换,基于MATLAB的实现方法,小波分解后用全色影像替代多光谱影像。
Matlab
0
2024-11-03
Top NoSQL Time Series Databases Overview
Time Series Database (TSDB) is a database system specifically designed for efficiently storing, managing, and processing time series data. This type of data typically involves numerical values associated with specific timestamps, commonly found in monitoring, IoT, financial transactions, and operational analytics. This article explores several key NoSQL time series databases, including InfluxDB, ScyllaDB, CrateDB, and Riak TS, as well as Apache Druid, highlighting their characteristics and application scenarios.
1. InfluxDB
InfluxDB, developed by InfluxData, is an open-source time series database designed for real-time analysis and big data. It features high write performance and low-latency query capabilities, supporting complex time series data queries. InfluxDB is particularly suited for handling data from sensors, logs, metrics, and is widely used in monitoring systems, IoT applications, and real-time analysis scenarios.
2. ScyllaDB
ScyllaDB is a high-performance distributed database based on Apache Cassandra. It offers higher throughput and lower latency than native Cassandra. Its optimized time series data processing capabilities make it ideal for real-time applications such as monitoring and log analysis. ScyllaDB supports multi-data center deployments to ensure high availability and consistency of data.
3. CrateDB
CrateDB is a column-oriented distributed SQL database that can handle large-scale time series data. It provides a SQL interface, making time series data operations more familiar to traditional database users. CrateDB is suitable for projects that require rapid analysis of large amounts of time series data and prefer using SQL for querying.
4. Riak TS
Developed by Basho Technologies, Riak TS is a NoSQL solution focused on time series data. It inherits the core features of Riak, such as high availability and scalability. Riak TS is suitable for applications that need to store and retrieve time series data in a distributed environment, such as recording equipment status in the telecommunications or energy industries.
5. Apache Druid
Although Druid is not a traditional NoSQL database, it is a columnar data store designed for real-time analytics. Druid is renowned for its excellent Online Analytical Processing (OLAP) performance and low-latency query capabilities, making it suitable for big data real-time analysis and business intelligence applications.
These databases each have their strengths. InfluxDB and Druid excel in real-time analytics, ScyllaDB and CrateDB offer powerful distributed processing capabilities, while Riak TS specializes in distributed storage and retrieval. Developers should consider data scale, performance requirements, query complexity, SQL support, and team expertise when choosing a solution.
NoSQL
0
2024-10-30
Acycle Time Series Analysis Software for Research and Education
Acycle: Acycle是一个用于研究和教育的时间序列分析软件,提供强大的分析工具和用户友好的界面,适合学术研究和教学使用。
Matlab
0
2024-11-03
Fill Missing Data in Time Series Using NaN in MATLAB
该代码有助于填补时间序列数据中的空白。为此,它需要一个缺少日期和时间的 DateTime 数组以及具有相应缺失值的 测量数组。它将检查日期数组中缺少的日期,并为测量数组中的相应日期填充 NaN,这将有助于获取连续的时间序列数据。
Matlab
0
2024-11-03
Finding Main Harmonics in Time Series Data with Periods Function
Periods是一个函数,其目的是找到时间序列数据的主要谐波分量。该函数获取时间序列中主要谐波分量的周期、幅度和滞后相位。它基于循环下降的周期性回归方法,包括统计显著性检验。上述功能非常易于使用,并不需要用户完全理解时间序列理论或大量输入,但足够灵活以承担更复杂的任务,例如预测。此外,根据先前的知识,可以轻松地包括或排除特定时期。González-Rodríguez, E.等人提供了有关如何使用该功能的参考资料和更详细的信息;(2015)时间序列中周期的提取和建模的计算方法。开放统计杂志,5, 604-617。http://dx.doi.org/10.4236/ojs.2015.56062。Periods在MATLAB 2013a版本及后续版本上进行了测试。任何问题/意见都可以通过电子邮件发送至egonzale@cice
Matlab
0
2024-11-04
2D Wavelet Transform in MATLAB Image Processing and Reconstruction
基于 MATLAB 的图像 二维小波变换,以及图像 重建。通过小波变换,可以有效地对图像进行压缩和去噪,从而提高图像质量。将介绍如何使用 MATLAB 实现这一过程,包含相关代码示例和关键步骤的详细说明。
Matlab
0
2024-11-04
MATLAB Wavelet Neural Network Algorithm
用于小波神经网络MATLAB程序模拟,建议初学者好好看看,有一定作用。
Matlab
0
2024-11-03
Matlab Horizon Stabilization with Hough Transform
Matlab霍夫变换函数代码用于地平线稳定。这是提交给Matlab文件交换的代码副本,包含以下功能:使用霍夫变换(需要图像处理或计算机视觉工具箱)检测地平线,计算精确的摄像机俯仰和滚动,从不同角度稳定图像,利用已知的相机高度将图像校正到平坦海面。如果已知相机方向的不确定性,还能估计稳定或校正中的误差。该工具箱包括两个脚本和一组示例图像,指导用户使用这些功能。代码使用Matlab版本2014a编写,需计算机视觉系统工具箱或图像处理工具箱,受BSD许可证保护。
Matlab
0
2024-11-01
Morlet Wavelet MATLAB Code for Muse Project
Morlet小波的MATLAB代码。MuseProject该存储库包含可用于预处理Muse头带的数据,并对其应用ML模型以基于RGB颜色对数据进行分类的代码。editmusefilewithtime.py该文件用于编辑来自缪斯应用程序MIND MONITER的RAW文件。该文件分为多个子文件,这些子文件包含当人们看到红色、绿色和蓝色时的实例数据。由于在我们的案例中,一个实验包含每种颜色的20个试验,因此我们得到了60个csv文件,其中分别有20个文件为红色、绿色和蓝色。musecombinedimage.m为了从数据中获得频谱图图像,我们使用MATLAB。通过应用Morlet小波变换,可以获得每个电极以及电极组合的图像。museexpfinal_lastrun.py该文件用于运行视觉实验。它使用Python的Psychopy库。runmuseapp.sh该Shell脚本运行代码以预处理数据并以可训练的格式获取数据。mlmodelmuse此文件夹具有已应用于数据的模型。随着工作的进展,该存储库将被更新。
Matlab
0
2024-11-04