This MATLAB code imports time-series data related to riverbank and water depth coordinates in XY format, sampled every 10 minutes. The code calculates the cross-sectional area for each water depth and writes the following data to an Excel file: Date/Time, Water Depth, and the cross-sectional area for each water depth.
MATLAB Code for Cross Sectional Area Analysis from Time Series Data in Excel
相关推荐
Acycle Time Series Analysis Software for Research and Education
Acycle: Acycle是一个用于研究和教育的时间序列分析软件,提供强大的分析工具和用户友好的界面,适合学术研究和教学使用。
Matlab
0
2024-11-03
Chaos Time Series Toolbox Comprehensive MATLAB Programs for Analysis and Prediction
This Chaos Time Series Toolbox includes a variety of MATLAB programs for analyzing chaotic time series. The toolbox features methods for calculating delay time, embedding dimension, and various prediction techniques. The provided code is fully functional and ready to run, ensuring an effective and reliable approach to chaotic data analysis.
Matlab
0
2024-11-06
Fill Missing Data in Time Series Using NaN in MATLAB
该代码有助于填补时间序列数据中的空白。为此,它需要一个缺少日期和时间的 DateTime 数组以及具有相应缺失值的 测量数组。它将检查日期数组中缺少的日期,并为测量数组中的相应日期填充 NaN,这将有助于获取连续的时间序列数据。
Matlab
0
2024-11-03
Finding Main Harmonics in Time Series Data with Periods Function
Periods是一个函数,其目的是找到时间序列数据的主要谐波分量。该函数获取时间序列中主要谐波分量的周期、幅度和滞后相位。它基于循环下降的周期性回归方法,包括统计显著性检验。上述功能非常易于使用,并不需要用户完全理解时间序列理论或大量输入,但足够灵活以承担更复杂的任务,例如预测。此外,根据先前的知识,可以轻松地包括或排除特定时期。González-Rodríguez, E.等人提供了有关如何使用该功能的参考资料和更详细的信息;(2015)时间序列中周期的提取和建模的计算方法。开放统计杂志,5, 604-617。http://dx.doi.org/10.4236/ojs.2015.56062。Periods在MATLAB 2013a版本及后续版本上进行了测试。任何问题/意见都可以通过电子邮件发送至egonzale@cice
Matlab
0
2024-11-04
IEEG_Data_Analysis_with_Matlab_Code.zip
使用分散的数据点来插入头部图像的像素值。此函数使用GRIDDATA从头部图像上的散点插入像素值。参考图像可用于从10/20国际系统(脑电图电极位置)中交互式选择点位置。插值选项包括线性、三次和最近。输入是对应于每个选定位置的值。包括示例。
Matlab
0
2024-11-03
MATLAB Excel Import Code for Data Science Basics
MATLAB导入Excel代码数据科学语: Julia [这就是我们正在使用的]库/软件包: matplotlib-用于数据分析 Matlab-用于数学计算快速说明: julia code = .jl文件扩展名操作:赞美~和&或|双向运算,例如>, <, >>>数学运算:输入数据输入一个字符串: var = readline()读取数字: num = parse(Int64, readline())环形尽管while (true) print("Go to hell") end有条件的如果别的if (num % 2 == 0) println("even") else println("odd") end职能:传统方法: function sum(a,b) a + b end新方法: sum(a,b) = a + b功能对象的分配something = sum现在分配的对象将工作相同something(5, 10)功能类型用户自定义功能参数功能功能形式没有参数,没有返回
Matlab
0
2024-11-02
Top NoSQL Time Series Databases Overview
Time Series Database (TSDB) is a database system specifically designed for efficiently storing, managing, and processing time series data. This type of data typically involves numerical values associated with specific timestamps, commonly found in monitoring, IoT, financial transactions, and operational analytics. This article explores several key NoSQL time series databases, including InfluxDB, ScyllaDB, CrateDB, and Riak TS, as well as Apache Druid, highlighting their characteristics and application scenarios.
1. InfluxDB
InfluxDB, developed by InfluxData, is an open-source time series database designed for real-time analysis and big data. It features high write performance and low-latency query capabilities, supporting complex time series data queries. InfluxDB is particularly suited for handling data from sensors, logs, metrics, and is widely used in monitoring systems, IoT applications, and real-time analysis scenarios.
2. ScyllaDB
ScyllaDB is a high-performance distributed database based on Apache Cassandra. It offers higher throughput and lower latency than native Cassandra. Its optimized time series data processing capabilities make it ideal for real-time applications such as monitoring and log analysis. ScyllaDB supports multi-data center deployments to ensure high availability and consistency of data.
3. CrateDB
CrateDB is a column-oriented distributed SQL database that can handle large-scale time series data. It provides a SQL interface, making time series data operations more familiar to traditional database users. CrateDB is suitable for projects that require rapid analysis of large amounts of time series data and prefer using SQL for querying.
4. Riak TS
Developed by Basho Technologies, Riak TS is a NoSQL solution focused on time series data. It inherits the core features of Riak, such as high availability and scalability. Riak TS is suitable for applications that need to store and retrieve time series data in a distributed environment, such as recording equipment status in the telecommunications or energy industries.
5. Apache Druid
Although Druid is not a traditional NoSQL database, it is a columnar data store designed for real-time analytics. Druid is renowned for its excellent Online Analytical Processing (OLAP) performance and low-latency query capabilities, making it suitable for big data real-time analysis and business intelligence applications.
These databases each have their strengths. InfluxDB and Druid excel in real-time analytics, ScyllaDB and CrateDB offer powerful distributed processing capabilities, while Riak TS specializes in distributed storage and retrieval. Developers should consider data scale, performance requirements, query complexity, SQL support, and team expertise when choosing a solution.
NoSQL
0
2024-10-30
MATLAB_Import_Excel_Code_RPD_PLoSOne_Resistor_Disruption_Distance_Analysis
MATLAB导入Excel代码 核机器测试脑网络与表型之间的关联
作者:亚历山大·詹森(MS),杰森·特雷格拉斯(Jason R Tregellas)博士,Brianne Sutton博士,邢福永博士,Debashis Ghosh博士
摘要:在过去的十年中,由于定量网络分析能够描述大脑网络的一般拓扑原理,因此在其功能上的应用已广受欢迎。然而,将标准统计分析技术应用于功能磁共振成像(fMRI)连接图时,会出现许多问题。通常,这些映射的摘要度量(例如全局效率和聚类系数)使图拓扑不断变化的结构从多个比例崩溃为一个比例。这可能会导致全脑时空模式信息的丢失,这在关联和预测分析中可能很重要。从电气工程领域来看,电阻扰动距离是对同一顶点集上的图之间相似度的量化,已显示该图可识别动态图的变化(例如来自fMRI的变化),而不会造成计算上的昂贵或导致损失信息。
这项工作提出了一种新颖的基于核的回归方案,该方案结合了阻力扰动距离,可以使用模拟和真实数据集更好地了解与fMRI的生物表型的关联。
真实数据集:COBRE随附手稿中使用的真实数据集来自卓越生物医学研究中心(COBRE)通过新墨西哥大学神经科学中心提供。
Matlab
0
2024-11-05
Reverb Time Calculator Estimating Reverberation Time from Multiple Microphone Records Using Time Log-MATLAB Development
The rt_script.m is the main program. It generates a text file and a PDF report to log the estimated reverberation time. Two measurement methods can be used: 1) Speaker On-Speaker Off Method, and 2) Balloon Burst Method. The documentation provides basic programs for both methods. It has been found that the Speaker On-Speaker Off Method is significantly more accurate than the Balloon Burst Method. The Balloon Burst Method tends to have over 50% error below 1000 Hz. The reverb_time.m calculates the reverberation time from the 1/3 octave band time logs. Time records of random test signals, generated by the script makelNHANESNoisesm_ed.m (also available on MATLAB Central File Exchange), are ideal for measuring reverberation time using the Speaker On-Speaker Off Method. The Balloon Burst Method can be used to process the same file multiple times to roughly estimate the reverberation time for each 1/3 octave band.
Matlab
0
2024-11-05