使用分散的数据点来插入头部图像的像素值。此函数使用GRIDDATA从头部图像上的散点插入像素值。参考图像可用于从10/20国际系统(脑电图电极位置)中交互式选择点位置。插值选项包括线性、三次和最近。输入是对应于每个选定位置的值。包括示例。
IEEG_Data_Analysis_with_Matlab_Code.zip
相关推荐
MATLAB Code for Cross Sectional Area Analysis from Time Series Data in Excel
This MATLAB code imports time-series data related to riverbank and water depth coordinates in XY format, sampled every 10 minutes. The code calculates the cross-sectional area for each water depth and writes the following data to an Excel file: Date/Time, Water Depth, and the cross-sectional area for each water depth.
Matlab
0
2024-11-06
Genetic Operators and MATLAB Code for Numerical Analysis
3.2 Genetic Operators
(1) Crossover Operator
The crossover operator randomly pairs individuals from the parent population for crossover operations, generating ( m ) offspring individuals to form the next generation. Two types of crossover are employed: single-point crossover and two-point crossover. Given two individuals for crossover ( P = {p_1, p_2, p_3, \dots, p_n} ) and ( Q = {q_1, q_2, q_3, \dots, q_n} ), a random crossover point ( b_1 ) is chosen from the range [1, n] for single-point crossover. The elements before ( b_1 ) in ( P ) are copied to offspring individual ( \text{new Individual1} ), while the remaining elements are copied from ( Q ). Similarly, a second offspring ( \text{new Individual2} ) is generated by swapping the roles of ( P ) and ( Q ). In two-point crossover, two random crossover points ( b_1 ) and ( b_2 ) are chosen, and the elements between ( b_1 ) and ( b_2 ) in ( P ) are copied to the offspring, with the remaining elements taken from ( Q ).
(2) Mutation Operator
After the crossover operation, two mutation operators are applied to the offspring individuals. The first is rotation mutation, where a random position ( \text{bit} ) is chosen, and with probability ( p_m1 ), the portion of the individual after ( \text{bit} ) is rotated. The second is position mutation, with a smaller probability ( p_m2 ), two integers ( \text{bit1} ) and ( \text{bit2} ) are randomly chosen from the range [1, n], and the corresponding parts of the individual are swapped.
(3) Selection Operator
The fitness of the mutated offspring individuals is evaluated using the lowest level line method. The parent and offspring individuals are ranked by their fitness in descending order, and the top ( m ) individuals are selected as the next generation's parents.
3.3 Termination Criteria
The steps in sections 3.2(1), 3.2(2), and 3.2(3) are repeated until the fitness of the best solution meets the required threshold or the pre-defined number of generations is reached. At this point, the optimal solution is output.
4. Case Study
To test the performance of the algorithm, two cases from literature [3] are solved. In Case 1, a large rectangle of size ( 15 \times 40 ) is divided into 25 smaller rectangles. Based on the lowest level line method, the corresponding coding sequence is ( \text{Opt} = {1, -9, 11, -15, 17, -24, -25, -10, -14, -22, -23, -2, -3, -5, 18, 7, -8, -12, 19, -20, 21, 6, 13, 4} ). The width is set at 40, and height considerations follow suit for the genetic algorithm implementation.
Matlab
0
2024-11-06
Hierarchical Analysis MATLAB Code-Cancer
该存储库包含我们题为“用于从整个幻灯片图像中提取格里森组织并分级前列腺癌的扩张式残留分层分割框架”的论文的实现。拟议框架的框图所提出的框架是使用TensorFlow 2.3.1和Keras API与Python 3.7.8开发的。此外,一些预处理步骤和结果汇编也通过MATLAB R2020a执行。下面显示了安装和运行代码的详细步骤:
安装
要运行代码库,需要以下库。虽然该框架是使用Anaconda开发的,但它应该与其他平台兼容。- TensorFlow 2.3.1- Keras 2.3.1- OpenCV 4.4.0- tqdm- Matplotlib
另外,我们还提供了一个yml文件,其中包含所有这些软件包。
数据集
请下载所需的数据集,并按照以下提到的层次结构来训练和测试建议的框架:
├── trainingDataset
│ ├── train_images
│ │ └── tr_image_1.png
│ │ └── tr_image_2.png
Matlab
0
2024-11-06
Data Clustering Analysis Techniques
数据聚类是数据分析和数据挖掘领域的一个核心概念,它涉及将相似的数据项目分组在一起的过程,基于项目之间的相似度或差异度的度量。聚类分析对于探索性数据分析非常有用,可以帮助生成对数据的假设。数据聚类的过程可以被分为多个阶段,包括数据准备和属性选择、相似度度量选择、算法和参数选择、聚类分析以及结果验证。
在数据准备和属性选择阶段,需要对数据进行清洗、转换,并从中选择对聚类分析有意义的属性。例如,通过标准化处理大型特征,可以减少偏见。特征选择是将选定的特征存储在向量中,以便用作相似度或差异度的度量。特征向量可以包含连续值或二进制值,例如在某些情况下,品牌、类型、尺寸范围、宽度、重量和价格可以构成特征向量。维度缩减和采样在处理高维数据时特别重要,可以使用主成分分析(PCA)、多维尺度分析(MDS)、FastMap等算法将数据投影到低维空间。
对于大型数据集,可以通过较小的随机样本进行聚类,同时采样也用于某些算法的种子设定。在相似度度量方面,通常使用各种距离度量方法,如明可夫斯基度量,这是基于栅格上距离的常识概念。这些度量方法对于紧凑孤立的群集效果良好,但如果数据集中存在“大规模”特征,可能会对这些特征赋予过大的权重。在聚类之前进行缩放或标准化可以缓解这种情况。马氏距离考虑了特征之间的线性相关性,并在距离计算中包含协方差矩阵,使得如果特征向量来自同一分布,则该距离退化为欧几里得距离。如果协方差矩阵是对角的,则称为标准化欧几里得距离。余弦距离计算两个特征向量之间的夹角的余弦值,在文本挖掘中经常使用,尤其是在特征向量非常大但稀疏的情况。皮尔逊相关系数是一种衡量两个随机变量线性相关程度的度量。
层次聚类是聚类算法的一种,它通过计算距离矩阵并迭代地合并最相似的聚类来构建一个聚类层次结构。层次聚类可以是自底向上的凝聚方法,也可以是自顶向下的分裂方法。聚类算法的参数选择对于聚类质量至关重要。在聚类分析完成后,需要对结果进行验证,以确保聚类是有意义的,并且满足数据分析的目标。聚类的用途广泛,例如在市场细分、社交网络分析、图像分割等领域都有应用。聚类分析还与其他技术结合使用,如与分类算法相结合来改进机器学习模型的性能。
算法与数据结构
0
2024-10-31
Sentiment Analysis in Data Mining
情感分析在数据挖掘中的应用
概述
随着互联网的快速发展和社交媒体平台的普及,人们越来越依赖于在线评论、博客和新闻来获取产品和服务的信息。因此,情感分析作为一项重要的数据挖掘技术,能够帮助企业和个人理解用户对特定产品、服务或事件的情感倾向,对于市场营销、品牌管理及客户服务等方面具有重要意义。
情感计算的基本概念
情感计算(Affective Computing)是一种利用计算机技术自动分析文本、图像或视音频等媒介中所蕴含的情感倾向及其强度的技术。其主要目标是识别和处理人类情绪信息。情感计算可以分为两个主要方面:- 主观性(Subjectivity):指的是文本或信息的主观程度,通常分为三种类型:主观性、客观性和中性。- 情感倾向(Orientation):表示文本的情感极性,如正面(褒义)、负面(贬义)和中性。
情感计算的应用场景
情感计算在多个领域有着广泛的应用,包括但不限于:1. 市场智能与商业决策:企业通过分析消费者的意见和情绪,可以更好地了解市场需求、评估竞争对手的表现以及调整营销策略。2. 个体消费行为影响:约81%的互联网用户至少有一次在线研究产品的经历;73%到87%的人认为在线评价显著影响了他们的购买决定。3. 广告定位:根据用户生成的内容来精准投放广告,如在正面评价的产品下方投放同类竞品广告。4. 意见检索/搜索:提供一般性的意见搜索功能,帮助用户快速找到他们关心的话题的相关评价。
面临的挑战
情感计算面临的主要挑战包括如何准确判断一段文本是否具有主观性,以及如何理解人类语言使用的丰富性和复杂性。例如,“电池续航2小时”与“电池仅能续航2小时”这两句话虽然字面意思相同,但传达的情感却截然不同。
文本情感计算的关键技术
文本情感计算主要包括以下几个方面:1. 词语的情感倾向:识别文本中的情感词汇,并确定其正面或负面的情感极性。- 情感词汇表:建立一个包含大量情感词汇及其极性评分的列表。- 情感词汇的上下文依赖性:某些词汇的情感倾向取决于具体的上下文。
数据挖掘
0
2024-10-31
Crowdsourcing Salary Data Analysis Dataset
本数据集目前包含约 35,000行 和 10列,适用于行业薪酬分析。
数据集介绍
该工资数据源于 AskAManager,通过众包形式收集。用户可在Google表单上提交个人薪资数据,生成此Google电子表格数据。
数据内容
此数据集包含以下10列:- 时间戳记- 你几岁?- 从事的行业- 职称- 年薪- 货币类型- 所在地(城市/州/国家)- 大学后工作经验- 其他职位描述- 其他货币类型
数据特点
由于是众包数据,存在一定噪音,但对Kaggle用户的分析需求仍具备参考价值。若该数据集热度上升,将考虑自动提取最新提交的数据以保持更新。
统计分析
0
2024-10-28
GCLUTO_Data_Analysis_Tool
FILES ----- README.txt help file doc/ directory containing documentation for gCLUTO images/ directory containing all images for gCLUTO linux/gcluto Linux binary matrices/ directory containing example matrices windows/gcluto.exe Microsoft Windows executable windows/glut32.dll GLUT Graphics Lib - required DLL for gcluto.exe windows/msvcrt.dll MS C Run Time Lib - required DLL for gcluto.exe
统计分析
0
2024-10-31
Big Data Analysis of MR and Signaling Data in LTE Networks
在当前的大数据时代背景下,LTE网络的发展带来了大量的数据,为网络分析提供了全新的机遇和挑战。详细介绍了如何运用MR(测量报告)数据和信令数据进行联合分析,以解决网络用户投诉、优化网络性能等问题。
MR数据是TD-LTE系统输出的一部分,包含了三个主要部分:MRs、MRE(事件性测量统计)和MRo(原始测量统计)。MRo文件中包含了每个用户每个周期性测量事件的原始统计信息,是定位过程中使用的重点数据。信令数据通过s1接口进行分析,提供了用户事件等信息的参考,尤其是在用户级信令统计方面。
联合分析中,MR数据用于定位计算,信令数据提供详细的用户事件信息,两者结合将数据视角从小区扩展到具体地理位置。主要利用时间和s1APID信息来关联数据。在用户正常呼叫过程中,MMEuEslAPid保持不变,这使得在指定时间段内可以实现MR和信令的关联。
为处理和分析这些大数据,现代CPU的发展提供了强大的计算能力。MR数据的量级达到每天几个TB,信令数据则为几十个TB,处理这些数据需要高效的方法。信令详单是与MR进行关联的主要信令数据,为跨厂商的用户级信令统计提供了可能。通过这样的联合分析,运营商能够更加精准地定位网络问题,优化网络配置,提高用户满意度。
算法与数据结构
0
2024-10-31
MATLAB Excel Import Code for Data Science Basics
MATLAB导入Excel代码数据科学语: Julia [这就是我们正在使用的]库/软件包: matplotlib-用于数据分析 Matlab-用于数学计算快速说明: julia code = .jl文件扩展名操作:赞美~和&或|双向运算,例如>, <, >>>数学运算:输入数据输入一个字符串: var = readline()读取数字: num = parse(Int64, readline())环形尽管while (true) print("Go to hell") end有条件的如果别的if (num % 2 == 0) println("even") else println("odd") end职能:传统方法: function sum(a,b) a + b end新方法: sum(a,b) = a + b功能对象的分配something = sum现在分配的对象将工作相同something(5, 10)功能类型用户自定义功能参数功能功能形式没有参数,没有返回
Matlab
0
2024-11-02