国内
当前话题为您枚举了最新的国内。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
国内高校名录汇编
本名录汇集了全国2741所高校信息,涵盖名称、所属部门、所在地、办学类型等字段。数据以JSON格式提供,可直接导入NoSQL数据库或转换后导入SQL数据库。
MongoDB
4
2024-05-13
国内数据挖掘软件现状
国内数据挖掘软件现状
当前,国内数据挖掘软件发展现状可概括为:
科研为主导: 大部分软件仍处于科研阶段,主要由高校和科研机构进行算法研究。
文献资源有限: 国内数据挖掘领域著作较少,主要依赖翻译国外书籍。
专业社区活跃: 数据挖掘讨论组 (www.dmgroup.org.cn) 为专业人士提供交流平台。
应用领域拓展: 部分公司基于国外成熟产品进行二次开发,推出特定应用解决方案。
国外产品占优势: 市场上的主流数据挖掘软件仍以 IBM Intelligent Miner、SAS Enterprise Miner 等国外产品为主。
自主研发崭露头角: 以复旦德门 (www.datamining.com.cn) 为代表的国内企业,正积极开发拥有自主知识产权的数据挖掘软件。
国内数据挖掘软件发展面临挑战
核心技术突破: 需加强原创性算法研究,打破国外技术垄断。
人才队伍建设: 培养兼具理论基础和实践经验的专业人才。
应用生态构建: 推动数据挖掘技术与各行业深度融合,拓展应用场景。
未来展望
随着国家对数据产业的重视和投入,以及企业数字化转型的加速,国内数据挖掘软件行业发展前景广阔。
数据挖掘
4
2024-05-23
国内地区信息SQL数据
地区信息SQL文件包含全国各地以及港澳台地区的城市数据。
SQLServer
2
2024-07-24
国内IP地址归属查询表
该表格以CSV格式呈现,列出各国家、省份及其IP地址段的起始和结束信息,同时标注了国内IP地址的起始段。
MySQL
0
2024-09-22
国内地区数据表结构
areas 表结构如下:- id: 主键,自增- areaname: 地区名称- pid: 父级地区 ID- shortname: 地区简称- level: 地区级别- position: 位置信息- sort: 排序字段
MySQL
3
2024-05-13
国内城市信息数据库
该数据库包含中国所有城市的详细信息,包括城市 ID、国家、省份、经度、纬度和城市名称。还提供了按直辖市、特别行政区、省会城市、市及下属地区、省级、省内城市和县级信息进行搜索的归类语句。
SQLite
1
2024-05-15
全国地区IP地址列表(国内版)
全国各省市IP地址列表(国内版)的整理发现在网络上找不到省市的IP地址段,因此自行整理并将IP转换为数字。
Access
1
2024-08-03
2005 年国内外 IP 段总结
国内外 IP 地址段汇总,供您参考。
Access
2
2024-05-13
国内外遥感影像分类研究综述
从上世纪70年代开始,国内外遥感影像分类研究逐渐成为学术界关注的焦点。早期主要采用统计模式识别方法,如1980年的最大似然法和1983年的光谱特征分类,主要用于获取森林资源信息。随着技术进步,预处理、多源信息融合、人工智能理论以及分类后处理等新方法应运而生,以提高分类精度。近年来,人工神经网络模型作为综合数据分类方法受到广泛关注。
Matlab
0
2024-08-30
国内外量化交易研究现状分析
1.2 国内外研究现状
1.2.1 国外研究现状
国外有关量化交易的研究内容非常广阔,这里主要选取公开出版的著作进行讨论。斯坦福大学华人统计学家黎子良从理论研究的角度讲述了数量金融中最重要的统计模型和方法,通过统计建模与统计决策的理论,将复杂的金融理论与投资实务相结合,具有深刻的理论意义和借鉴价值。Richard Tortoriello归纳了七个投资维度:盈利性、估值、现金流、成长性、资产配置、价格动量及危险信号,给出了如何有效结合单个投资因子或组件因子,构建多因子策略,从而形成更全面的选股模型。金斯伯格详细阐述了基于MATLAB软件的量化投资技术,特别是对三大类金融工具箱的介绍,具有良好的实操性。Andrew Pole阐述了统计套利的发展历程和基本原理,特别是对实施统计套利过程中所用的几类重要统计模型进行了分析。Irene Aldridge全面介绍了高频交易的历史、适用范围、实施高频交易所需的模型和关键技术,并对交易的整个流程进行了详细介绍。Barry Johnson为量化投资中的算法交易程序设计部分提供了技术基础。
1.2.2 国内研究现状
国内有关量化交易的研究主要由中国量化投资学会理事长丁鹏博士主导,涵盖多个领域。
数据挖掘
0
2024-10-31